Matematica Discreta e Applicazioni

Topological Data Analysis

Ulderico Fugacci

CNR - IMATI

Topological Data Analysis

Topology *describes, characterizes,* and *discriminates shapes* by studying their properties that are preserved under *continuous deformations*, such as *stretching* and *bending*, but *not tearing* or *gluing*

Topological Data Analysis

Assumption in TDA: *Any data* can be endowed with a *shape*. So, any data can be studied in terms of its *topological features*

Topological Data Analysis

Outline:

The Notion of Shape Simplicial Complexes Simplicial Homology From Data to Complexes Persistent Homology Visualizing Persistence *Persistence & Stability* **Computing Persistence Data Structures**

The Notion of Shape

Geometry or Topology?

Which of these domains look similar?

Geometry or Topology?

And what about these ones?

Geometry or Topology?

The answer depends on the *point of view* we adopt

Geometry cares about those properties which change when an object is continuously deformed E.g. length, area, volume, angles, curvature, ...

Geometry or Topology?

The answer depends on the point of view we adopt

Topology Georetry cares about those properties which change when an object is continuously deformed E.g. connectivity, orientation, manifoldness, ...

Homeomorphisms

Given two topological spaces (X, T) and (X', T'), a function f: $X \rightarrow X'$ is called *homeomorphism* if:

- f is a *bijection*
- f is continuous
- f⁻¹ is continuous

Two topological spaces (X, T) and (X', T') are *homeomorphic* and denoted $X \cong X'$ if there exists a homeomorphism f: $X \rightarrow X'$

Homeomorphisms induce an *equivalence relation* of topological spaces partitioning them into equivalence classes

Homeomorphisms

The notion of homeomorphism captures the idea of continuous deformation

Definition:

I is a *topological invariant* if, given two topological spaces (X, T) and (X', T'),

X is homeomorphic to X'

Some classical topological invariants:

- Connectedness
- Compactness
- Manifoldness

\$<u>.</u>.....

X and X' have the same

topological invariant

I(X) = I(X')

- Orientability
- Euler characteristic
- Homology
- Homotopy

Is there a "perfect" topological invariant I such that $X \cong X'$ if and only if I(X) = I(X')?

Question:

Is there a "perfect" topological invariant I such that $X \cong X'$ if and only if I(X) = I(X')?

Let us **simplify the question** and let focus on:

- Considering a specific topological invariant I (e.g. the homology)
- Completely characterizing just the **spheres** $S^n := \{x \in \mathbb{R}^n : |x| = 1\}$

The above question turns into the following:

If X and Sⁿ have the same homology, then $X \cong S^n$?

Is there a "perfect" topological invariant I such that $X \cong X'$ if and only if I(X) = I(X')?

Let us **simplify the question** and let focus on:

- Considering a specific topological invariant I (e.g. the homology)
- Completely characterizing just the **spheres** $S^n := \{x \in \mathbb{R}^n : |x| = 1\}$

The above question turns into the following:

If X and Sⁿ have the same homology, then $X \cong S^n$?

Replacing homology with homotopy, the answer is positive!

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

But:

If X is a closed n-manifold homotopy equivalent to S^n , then $X \cong S^n$

Proven by Grigori Perelman in 2003

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

But:

If X is a closed n-manifold homotopy equivalent to S^n , then $X \cong S^n$

Proven by Grigori Perelman in 2003

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^n , then $X \cong S^n$

Proven by Grigori Perelman in 2003

So:

But:

Why we will mainly focus on homology rather than homotopy?

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^n , then $X \cong S^n$

Proven by Grigori Perelman in 2003

So:

But:

Why we will mainly focus on homology rather than homotopy?

Because, in practice, computing homotopy groups is nearly impossible!

Bibliography

Some References:

- Books on TDA:
 - A. J. Zomorodian. *Topology for computing*. Cambridge University Press, 2005.
 - H. Edelsbrunner, J. Harer. Computational topology: an introduction. American Mathematical Society, 2010.
 - R. W. Ghrist. *Elementary applied topology*. Seattle: Createspace, 2014.
- Papers on TDA:
 - G. Carlsson. *Topology and data*. Bulletin of the American Mathematical Society 46.2, pages 255-308, 2009.
- Intro to (Algebraic) Topology:
 - E. Sernesi. *Geometria 2*. Bollati Boringhieri, Torino, 1994.
 - A. Hatcher. *Algebraic topology.* Cambridge University Press, 2002.

Simplicial Complexes

Data

We want to associate a topological structure to a given dataset

Goal:

Due to the nature of data and to

our computational ambitions, datasets will be represented by "discrete" structures

Among various possibilities, *simplicial complexes* represent the most suitable choice

Shape

In fact, simplicial complexes are able to deal with data:

- of *large size* (e.g. consisting of a huge number of samples)
- of *high dimension* (e.g. involving a large number of variables or parameters)
- unorganized (e.g. not arranged in a regular grid)

Definitions:

A set V := { v_0 , v_1 , ..., v_k } of points in \mathbb{R}^n is called

geometrically independent if vectors $v_1 - v_0$, ..., $v_k - v_0$ are *linearly independent* over \mathbb{R}

E.g. two distinct points, three non-collinear points, four non-coplanar points

The *k-simplex* $\sigma = v_0 v_1 \dots v_k$ spanned by a geometrically independent set V = { v_0, v_1, \dots, v_k } of in \mathbb{R}^n is the *convex hull* of V, i.e. the set of all points $x \in \mathbb{R}^n$ such that

$$x = \sum_{i=0}^{k} t_i v_i$$
 where $\sum_{i=0}^{k} t_i = 1$ and $t_i \ge 0$ for all i

The numbers t_i are uniquely determined by x and are called *barycentric coordinates* of x *E.g. a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron*

Definitions:

- The points v_0 , v_1 , ..., v_k spanning a k-simplex σ are called the *vertices* of σ
- k is called the *dimension* of σ and denoted as dim(σ)
- Any simplex au spanned by a non-empty subset of V is called a *face* of σ
- + Conversely, σ is called a *coface* of τ

Definition:

A (geometric) simplicial complex K in \mathbb{R}^n is a collection of simplices in \mathbb{R}^n such that

- Every face of a simplex of K is in K
- The non-empty intersection of any two simplices of K is a face of each of them

Simplicial Complexes

Definitions:

Given a (geometric) simplicial complex K in \mathbb{R}^n ,

 The *dimension* of a simplicial complex K in ℝⁿ, denoted as dim(K), is the supremum of the dimensions of the simplices of K

- A simplex σ of K such that dim(σ) = dim(K) is called *maximal*
- A simplex σ of K which is not a proper face of any simplex of K is called *top*
- A subcollection of K that is itself a simplicial complex is called a *subcomplex* of K

Definitions:

Given a simplex σ of a (geometric) simplicial complex K in \mathbb{R}^n ,

- The *star* of σ is the set *St(\sigma)* of the cofaces of σ
- The *link* of σ is the set *Lk(σ)* of the faces of the simplices in St(σ) such that do not intersect σ

Definitions:

Given a simplex σ of a (geometric) simplicial complex K in \mathbb{R}^n ,

- The *star* of σ is the set *St(\sigma)* of the cofaces of σ
- The *link* of σ is the set *Lk(σ)* of the faces of the simplices in St(σ) such that do not intersect σ

Given a (geometric) simplicial complex K in \mathbb{R}^n ,

its **polytope** |K| is the subset of \mathbb{R}^n defined as the union of the simplices of K

The polytope |K| can be endowed with *two possible topologies* T₁ and T₂:

- *T*₁: A subset F of |K| is a closed set of (|K|, T₁) if and only if F ∩ σ is a closed set of (σ, T_σ) for each σ in K where T_σ is the subspace topology induced on σ by Eⁿ
- ← T_2 : The subspace topology induced on |K| by \mathbb{E}^n

In general, the two topologies T_1 , T_2 are *different*, but

Proposition: If K is a **finite** simplicial complex, $T_1 = T_2$

From now on, if not differently specified, we consider only *finite* simplicial complexes

Proposition:

Given a simplicial complex K and a topological space (X, T), a function f from $(|K|, T_1)$ to (X, T) is **continuous** if and only if $f|_{\sigma}$ is continuous for each $\sigma \in K$

Definition:

Given two simplicial complexes K and K',

- A function f: K → K' is called a *simplicial map* if for every simplex σ = v₀v₁... v_k in K,
 f(σ) = f(v₀)f(v₁)... f(v_k) is a simplex in K'
- The restriction f_v of f to the set of vertices V of K is called the vertex map of f

Definition:

An *abstract simplicial complex* K on a set V is a collection of finite non-empty subsets of V, called *simplices*, such that if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$

Analogously to the case of a geometric simplicial complex,

- The elements of V are called *vertices* of K
- The *dimension* of a simplex σ is one less than the number of its elements
- The supremum of the dimensions of the simplices in K is called *dimension* of K
- ► Each non-empty subset τ of a simplex σ ∈ K is called a *face* of σ and σ is called a *coface* of τ

The notions of geometric simplicial complex and abstract simplicial complex are equivalent. More properly, it is always possible,

- Given an abstract simplicial complex, to endow it with a **geometric realization**
- Given a geometric simplicial complex, to forget its geometry thus obtaining an abstract simplicial complex

Definition: A simplicial complex K is called

- *n-manifold [with boundary]* if its polytope |K| is a (topological) n-manifold [with boundary]
- Combinatorial n-manifold [with boundary] if, for every vertex v, the link Lk(v) is homeomorphic to the (n − 1)-sphere Sⁿ⁻¹ [or to the (n − 1)-disk Dⁿ⁻¹:={x ∈ ℝⁿ⁻¹ : |x|≤1}]

Regular Grids

A *regular grid H* is a (finite) collection of hyper-cubes such that:

- Each face of a hyper-cube of H is in H
- Each non-empty intersection of two hyper-cubes in H is a face of both
- The domain of H is a hyper-cube

Cell Complexes

Similarly to simplicial complexes and regular grids,

A *cell complex* Γ is a collection of cells *"suitably glued together"*

Where a *k-cell* is a topological space homeomorphic to the *k-dimensional open disk i(D^k)*

Bibliography

Some References:

- Simplicial Complexes:
 - J. R. Munkres. *Elements of algebraic topology*. CRC Press, 1984.

Simplicial Homology

Given a topological space X, the *homology of X* is a *topological invariant*

intuition

detecting the "holes" of X

capturing the independent non-bounding cycles of X

formalism

measuring how far the chain complex associated with X is from being exact

Simplicial Homology

Given a simplicial complex K,

* a *k-chain* is a formal sum (with \mathbb{Z}_2 coefficients) of k-simplices of K

Examples:

- a + b + e is a 0-chain
- fg + dg + de + eg is a 1-chain
- *abg* + *afg* is a 2-chain

The *chain complex* C_{*}(K) associated with K consists of:

- A collection {∂_k}_{k∈ℤ} of linear maps where the *boundary map* ∂_k: C_k(K) → C_{k-1}(K) is defined by

Simplicial Homology

- ◆ ð₁(ab) = a + b
- ◆ $∂_1(ab + bc) = a + 2b + c = a + c$
- $\partial_2(afg + efg) = af + ag + 2fg + ef + eg =$ = af + ag + ef + eg
- ★ $\partial_1(af + ag + ef + eg) =$ = 2a + 2f + 2g + 2e = 0

Simplicial Homology

Simplicial Homology

Definition:

- A k-chain c is called:
- ★ k-cycle if c ∈ Ker($∂_k$)
- ◆ *k*-*boundary* if c ∈ Im(∂_{k+1})

Each k-boundary is a k-cycle

Given a simplicial complex K, the *k-homology group* $H_k(K)$ of K is defined as

$$H_k(K) := Z_k(K) / B_k(K)$$

where:

- ⋆ Z_k(K) is the group of k-cycles of K
- B_k(K) is the group of k-boundaries of K

 $H_k(K)$ partitions the k-cycles into equivalence classes called *homology classes*

Definition:

Two k-cycles are said *homologous* if they belong to the same homology class or, equivalently, *if their difference is a k-boundary*

ab+ag+bc+cg is homologous to bc+bg+cd+dg

Simplicial Homology

Simplicial Homology

Homology groups can be defined *in a more general way* by choosing coefficients in $\mathbb Z$

Theorem:

Each homology group can be expressed as

$$H_k(K;\mathbb{Z}) \cong \mathbb{Z}^{\beta_k} \langle c_1, \dots, c_{\beta_k} \rangle \oplus \mathbb{Z}_{\lambda_1} \langle c'_1 \rangle \oplus \dots \oplus \mathbb{Z}_{\lambda_{p_k}} \langle c'_{p_k} \rangle$$

with $\lambda_{i+1} \mid \lambda_i$

We call:

+ β_k , the *k*th *Betti number* of K

* $\lambda_1,\ldots,\lambda_{p_k}$, the *torsion coefficients* of K

+ $c_1, \ldots, c_{eta_k}, c'_1, \ldots, c'_{p_k}$, the *homology generators* of K

Image from [Dey et al. 2008]

Working with coefficients in $\mathbb Z$:

Up to isomorphism, the **Betti numbers** and the **torsion coefficients** of K

completely characterize the homology groups of K

Working with coefficients in a field $\mathbb F$:

Up to isomorphism, the **Betti numbers** of K

completely characterize the homology groups of K

Image from [Dey et al. 2008]

Simplicial Homology

The Klein bottle K is a non-orientable 2-dimensional

Example:

manifold embeddable in \mathbb{R}^4 which can be built from

a unit square by the following construction

By considering $\mathbb Z$ as coefficient group,

K has the following homology groups

Example:

$$H_k(K;\mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{for } k = 0\\ \mathbb{Z} \oplus \mathbb{Z}_2 & \text{for } k = 1\\ 0 & \text{for } k \ge 2 \end{cases}$$

So, it can be distinguished from a torus T

$$H_k(T; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{ for } k = 0 \\ \mathbb{Z}^2 & \text{ for } k = 1 \\ \mathbb{Z} & \text{ for } k = 2 \\ 0 & \text{ for } k > 2 \end{cases}$$

By considering \mathbb{Z}_2 as coefficient group,

Example:

the Klein bottle K and the torus T have isomorphic homology groups

Bibliography

Some References:

- Simplicial Homology:
 - J. R. Munkres. *Elements of algebraic topology*. CRC Press, 1984.

From Data to Complexes

From Data to Complexes

Let us consider a dataset represented by a *finite point cloud V in* \mathbb{R}^n

Studying the shape of V just by considering the space consisting of its **points does not provide any relevant topological information**

The *"real" shape* of the dataset can be captured by properly constructing a *complex connecting together close points through simplices*

From Data to Complexes

Standard Constructions:

A number of possible choices have been introduced in the literature:

Delaunay triangulations

- * Voronoi diagrams
- Čech complexes
- Vietoris-Rips complexes
- Alpha-shapes
- Witness complexes

Most of the above constructions are based on the notion of *Nerve complex*

From Data to Complexes

A First Classification:

Given a finite point cloud V in \mathbb{R}^n ,

	Output Complex	Dimension	Dependence on a Parameter
Delaunay triangulation	Geometric	n	×
Čech complex	Abstract	Arbitrary (up to V - 1)	\checkmark
Vietoris-Rips complex	Abstract	Arbitrary (up to V - 1)	
Alpha-shapes	Geometric	п	\checkmark
Witness complexes	Abstract	Arbitrary (up to V - 1)	

Given a finite collection S of sets in \mathbb{R}^n ,

The *nerve Nrv(S)* of S is the *abstract simplicial complex* generated by the *non-empty common intersections*

Formally,

$$Nrv(S) := \{ \sigma \subseteq S \mid \bigcap_{s \in \sigma} s \neq \emptyset \}$$

Nerve Theorem:

If S is a finite collection of **convex** sets in \mathbb{R}^n , then the **nerve of S** and the **union**

of the sets in S are homotopy equivalent (and so they have the same homology)

Nerve Theorem can be *generalized* by replacing the *convexity* of sets in S with the request that all non-empty common intersections are *contractible* (*i.e. that can be continuously shrunk to a point*)

Original Nerve Theorem:

If S is an open cover of a (para)**compact** space X such that every non-empty intersection of finitely many sets in S is **contractible**, then **X** is **homotopy equivalent** to the nerve **Nrv(S)**

Delaunay Triangulations

Given a finite point cloud V in \mathbb{R}^n ,

The *Delaunay triangulation* of V is a classic notion in Computational Geometry:

- Producing a "nice" triangulation of V
 - free of long and skinny triangles
- Named after **Boris Delaunay** for his work on this topic from 1934
- * Originally defined for sets of points in \mathbb{R}^2 but generalizable to arbitrary dimensions

Delaunay Triangulations

Definitions:

Given a finite point cloud V in \mathbb{R}^2 ,

- ★ The convex hull of V is the smallest convex subset
 CH(V) of \mathbb{R}^2 containing all the points of V
- A triangulation of V is A 2-dimensional simplicial complex K such that:
 - The domain of K is CH(V)
 - The 0-simplices of K are the points in V

Images from [De Floriani 2003]
Definition:

A **Delaunay triangulation** is a triangulation **Del(V)** of V such that:

the *circumcircle of any triangle* does *not contain any point* of V in its interior

Images from [De Floriani 2003]

Definition:

A finite set of points V in \mathbb{R}^n is *in general position* if no n + 2 of the points lie on a common (n – 1)-sphere

E.g. , *for n = 2*, V in general *No four or more points* if and only if are co-circular position Theorem: If V is in general position, then Del(V) is **unique** Images from [De Floriani 2003]

The *Voronoi region* of u in V is the set of points of \mathbb{R}^2 for which u is the closest

$$R_V(u) := \{ x \in \mathbb{R}^2 \mid \forall v \in V, d(x, u) \le d(x, v) \}$$

- * Any Voronoi region is a convex closed subset of \mathbb{R}^2
- + A Voronoi region is not necessarily bounded

The Voronoi diagram is the collection Vor(V)

of the Voronoi regions of the points of V

Images from [De Floriani 2003]

Duality Property:

If V is in general position, then

the **Delaunay triangulation coincides** with the **nerve of the Voronoi diagram**

$$Del(V) = \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} R_V(u) \neq \emptyset \}$$

- Each point u of V corresponds to a Voronoi region R_V(u)
- Each triangle t of Del(V) correspond to a vertex in Vor(V)
- Each edge e=(u,v) in Del(V) corresponds to an edge shared by the two Voronoi regions R_V(u) and R_V(v)

Algorithms:

- Two-step algorithms:
 - Computation of an arbitrary triangulation K'
 - Optimization of K' to produce a Delaunay triangulation
- Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]:
 - * Modification of an existing Delaunay triangulation while adding a new vertex at a time
- Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]:
 - Recursive partition of the point set into two halves
 - Merging of the computed partial solutions
- Sweep-line algorithms [Fortune 1989]:
 - * Step-wise construction of a Delaunay triangulation while moving a sweep-line in the plane

Watson's Algorithm:

A Delaunay triangulation is computed by **incrementally adding a single point** to an existing Delaunay triangulation

Let V_i be a subset of V and let u be a point in $V \setminus V_i$,

<u>Input:</u>

Del(V_i), a Delaunay triangulation of V_i

Output:

Del(V_{i+1}), a Delaunay triangulation of $V_{i+1} := V_i \cup \{u\}$

Images from [De Floriani 2003]

Watson's Algorithm:

Given a Delaunay triangulation $Del(V_i)$ of V_i and a point u in $V \setminus V_i$,

- The influence region R_u of a point u is the region in the plane formed by the union of the triangles in Del(V_i) whose circumcircle contains u in its interior
- The influence polygon P_u of u is the polygon formed by the edges of the triangles of Del(V_i) which bound R_u

Images from [De Floriani 2003]

Watson's Algorithm:

+ <u>Step 1:</u>

Deletion of the triangles of Del(V_i) forming the *influence region* R_u

+ <u>Step 2</u>:

Re-triangulation of R_u by joining u to the vertices of the influence polygon P_u

Watson's Algorithm:

Let $N_i = |V_i|$

- ◆ Detection of a triangle of Del(V_i) containing the new point u: O(N_i) in the worst case
- Detection of the triangles forming the region of influence through a breadth-first search: O(|R_u|)
- Re-triangulation of P_u is in O(|P_u|)
- Inserting a point u in a triangulation with N_i vertices: O(N_i) in the worst case
- Inserting all points of V: O(N²) in the worst case, where N = |V|

Čech Complexes

Given a finite set of points V in \mathbb{R}^n , let us consider:

Čech Complexes

Given a finite set of points V in \mathbb{R}^n , let us consider:

- + $B_u(r)$, the closed ball with center $u \in V$ and radius r
- *S*, the collection of these balls

Čech Complexes

Given a finite set of points V in \mathbb{R}^n , let us consider:

- + $B_u(r)$, the closed ball with center $u \in V$ and radius r
- *S,* the collection of these balls

The Čech complex Čech(r) of V of radius r is the nerve of S $\check{C}ech(r) := \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} B_u(r) \neq \emptyset \}$

Čech Complexes

Given a finite set of points V in \mathbb{R}^n , let us consider:

- + $B_u(r)$, the closed ball with center $u \in V$ and radius r
- S, the collection of these balls

The Čech complex Čech(r) of V of radius r is the nerve of S $\check{C}ech(r) := \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} B_u(r) \neq \emptyset \}$

Čech Complexes

Given a finite set of points V in \mathbb{R}^n , let us consider:

- + $B_u(r)$, the closed ball with center $u \in V$ and radius r
- S, the collection of these balls

The *Čech complex Čech(r)* of V of radius r is the *nerve of S* $ch(r):=\{\sigma \subseteq V \mid igcap B_u(r)
eq$

$$\check{C}ech(r) := \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} B_u(r) \neq \emptyset \}$$

In practice, infeasible construction

 $B_u(r)$

Vietoris-Rips Complexes

Given a finite set of points V in \mathbb{R}^n ,

The Vietoris-Rips complex VR(r) of V and r is the abstract simplicial complex consisting of all subsets of diameter at most 2r

Formally,

 $VR(r) := \{ \sigma \subseteq V \mid d(u, v) \le 2r, \forall u, v \in \sigma \}$

Vietoris-Rips Complexes

Properties:

- $\star \check{C}ech(r) \subseteq VR(r) \subseteq \check{C}ech(\sqrt{2}r)$
- VR(r) is completely determined by its 1-skeleton
 - ✤ I.e. the graph G of its vertices and its edges

Step 1

Vietoris-Rips Complexes

Algorithms:

Input: A finite set of points V in \mathbb{R}^n and a real positive number r

Output: The Vietoris-Rips complex VR(r)

A *two-step* approach is typically adopted:

- + Step 1 Skeleton Computation:
 - Exact (O(|V|²) time complexity)
 - Approximate
 - * Randomized
 - Landmarking
- + Step 2 Vietoris-Rips Expansion:
 - Inductive
 - Incremental
 - Maximal

Algorithms:

Input: A finite set of points V in \mathbb{R}^n and a real positive number r

Output: The Vietoris-Rips complex VR(r)

A *two-step* approach is typically adopted:

- + Step 1 Skeleton Computation:
 - Exact (O(|V|²) time complexity)
 - Approximate
 - * Randomized
 - Landmarking
- + Step 2 Vietoris-Rips Expansion:
 - Inductive
 - Incremental
 - Maximal

Inductive VR expansion:

<u>Input:</u> The 1-skeleton G = (V, E) of VR(r)

Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

```
K = V \cup E
for i = 1 to k
foreach i-simplex \sigma \in K
N = \cap_{u \in \sigma} LOWER-NBRS(G, u)
foreach v \in N
K = K \cup \{ \sigma \cup \{v\} \}
return K
LOWER-NBRS(G, u)
```


Inductive VR expansion:

<u>Input:</u> The 1-skeleton G = (V, E) of VR(r)

Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

```
K = V \cup E

for i = 1 to k

foreach i-simplex \sigma \in K

N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)

foreach v \in N

K = K \cup \{ \sigma \cup \{v\} \}

return K

LOWER-NBRS(G, u)
```


Inductive VR expansion:

<u>Input:</u> The 1-skeleton G = (V, E) of VR(r)

Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

```
INDUCTIVE-VR(G, k)
```

```
K = V \cup E

for i = 1 to k

foreach i-simplex \sigma \in K

N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)

foreach v \in N

K = K \cup \{ \sigma \cup \{v\} \}

return K

LOWER-NBRS(G, u)
```


Inductive VR expansion:

<u>Input:</u> The 1-skeleton G = (V, E) of VR(r)

Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

```
K = V \cup E
for i = 1 to k
foreach i-simplex \sigma \in K
N = \cap_{u \in \sigma} LOWER-NBRS(G, u)
foreach v \in N
K = K \cup \{ \sigma \cup \{v\} \}
return K
LOWER-NBRS(G, u)
```


Inductive VR expansion:

<u>Input:</u> The 1-skeleton G = (V, E) of VR(r)

Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

```
INDUCTIVE-VR(G, k)
```

```
K = V \cup E

for i = 1 to k

foreach i-simplex \sigma \in K

N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)

foreach v \in N

K = K \cup \{ \sigma \cup \{v\} \}

return K

LOWER-NBRS(G, u)
```


Inductive VR expansion:

<u>Input:</u> The 1-skeleton G = (V, E) of VR(r)

Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

```
K = V \cup E

for i = 1 to k

foreach i-simplex \sigma \in K

N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)

foreach v \in N

K = K \cup \{ \sigma \cup \{v\} \}

return K

LOWER-NBRS(G, u)
```


Alpha-Shapes

Definition:

Given a finite set of points V in general position of \mathbb{R}^n , let us consider:

- A_u(r) := B_u(r) ∩ R_V(u), the intersection of the closed ball with center u ∈ V and radius r and the Voronoi region of u
- *S*, the collection of these convex sets

The *alpha-shape Alpha(r)* of V of radius r is the *nerve of S*

Formally,

$$Alpha(r) := \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} A_u(r) \neq \emptyset \}$$

 $A_u(r) \subseteq B_u(r) \square Alpha(r) \subseteq \check{C}ech(r)$

Image from [Edelsbrunner, Harer 2010]

Witness Complexes

Motivation:

The "shape" of a point cloud can be captured without considering all the input points

- + Landmarks:
 - Selected points
- + Witnesses:

Remaining points

Images from [de Silva, Carlsson 2004]

Witness Complexes

 $W_0(r) \subset VR(r) \subset W_0(2r)$

Definition:

The *witness complex W(r)* of radius *r* is defined by:

- u is in W(r) if u is a landmark
- ◆ (u, v) is in W(r) if there exists a witness w such that
 $max{d(u, w), d(v, w)} ≤ m_w + r$

where m_w : = the distance of w from the **2nd closest landmark**

• the i-simplex σ is in W(r) if all its edges belong to W(r)

 $W_0(r)$ is defined by setting $m_w = 0$ for any witness w

From Data to Complexes

Not Only Point Clouds in \mathbb{R}^n

Most of the presented constructions can be *generalized/adapted* to the case of

a finite collection of elements endowed with a notion of proximity*

enabling to cover a wide plethora of datasets

*More properly, a **semi-metric**, i.e. a distance not necessarily satisfying the triangle inequality

From Data to Complexes

Not Only Point Clouds in \mathbb{R}^n

- + Point Clouds:
 - Delaunay triangulation
 - * Čech complexes
 - Vietoris-Rips complexes
 - Alpha-shapes
 - Witness complexes complexes
- Graphs and Complex Networks:
 - Flag complexes
- + Functions:
 - Sublevel sets

From Data to Complexes

Flag Complex of a Weighted Network:

Let G := (V, E, w: $E \rightarrow \mathbb{R}$) be a *weighted undirected graph* representing a *network*:

From Data to Complexes

Sublevel Sets of Functions

Given a *function* f: $D \rightarrow \mathbb{R}$,

+ <u>Step 1:</u>

Transform f: $D \rightarrow \mathbb{R}$ into a function **F:** $K \rightarrow \mathbb{R}$ *defined on a simplicial complex K*

E.g. if D is a point cloud, construct from it a simplicial complex K and define F as

 $F(\sigma) := \max\{f(v) \mid v \text{ is a vertex of } \sigma\}$

+ <u>Step 2</u>:

Build the collection $\{K^r\}_{r\in\mathbb{R}}$ of the *sublevel sets of F* defined as

$$K^r := \{ \sigma \in K \,|\, F(\sigma) \le r \}$$

Notice that K^r is a simplicial complex whenever: if τ is a face of σ then F(τ) \leq F(σ)

From Data to Complexes

From Data to Complexes

From Data to Complexes

Bibliography

Some References:

- From Data to Complexes:
 - + H. Edelsbrunner, *Geometry and Topology for Mesh Generation*. Cambridge University Press, 2001.
 - V. de Silva, G. Carlsson. Topological estimation using witness complexes. SPBG 4, pages 157-166, 2004.
 - A. Zomorodian, *Fast construction of the Vietoris-Rips complex*. Computers & Graphics 34.3, pages 263-271, 2010.
 - + H. Edelsbrunner. *Algorithms in Combinatorial Geometry*. Springer Science & Business Media, 2012.

Persistent Homology

Persistent Homology

Persistent Homology

Persistent Homology

Persistent Homology

Persistent Homology

Persistent Homology

Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data

Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data

Persistent Homology

Image from [Ghrist 2008]

Persistent Homology

Size Functions:

- Estimation of natural pseudo-distance
 between shapes endowed with a function f
- Tracking of the *connected components* of a shape along its evolution induced by *f*

Actually, this coincides with *persistent homology in degree 0*

Image from [Frosini 1992]

Persistent Homology

Incremental Algorithm for Betti Numbers:

- Introduction of the notion of *filtration*
- De facto computation of persistence pairs

Image from [Delfinado, Edelsbrunner 1995]

Persistent Homology

Persistent Homology

Topological Persistence:

- Introduction and algebraic formulation of the notion of *persistent homology*
- Description of an algorithm for computing persistent homology

Most of the techniques transforming a dataset into a simplicial complex depending on the choice of a parameter actually produce a filtration $\{K^p\}_{p \in \mathbb{R}}$

Working Assumption:

We can always pretend that parameter p varies over \mathbb{N}

Given a filtration $\mathcal{F} := \{ K^{p} \}_{p \in \mathbb{N}}, a \text{ value } i \in \mathbb{N}, and a field <math>\mathbb{F}, \text{ the } i^{th} \text{ persistence}$ module $M \text{ of } \mathcal{F} \text{ over } \mathbb{F}$ is defined as the finitely generated graded $\mathbb{F}[x]$ -module

$$M := \bigoplus_{p \in \mathbb{N}} M_p$$

where:

- + M_p := H_i (K^p; F), the set of homogeneous elements of grade p
- The action x^{q-p} h over an element h of grade p is defined as $\mu_i^{p,q}(h)$, where:
 - * $\mu_i^{p,q}(h)$: $H_i(K^p; \mathbb{F}) \longrightarrow H_i(K^q; \mathbb{F})$ is the linear map induced by the inclusion $K^p \subseteq K^q$

Theorem (structure for finitely generated graded modules over a PID):

Any persistence module M can be expressed as

$$M \cong \bigoplus_{k=1}^{n} \mathbb{F}[x](-r_k) \oplus \bigoplus_{j=1}^{m} \left(\mathbb{F}[x]/(x^{q_j-p_j}) \right)(-p_j)$$

So, *M* is completely determined by the collection of values r_k and of pairs (p_j, q_j) Such descriptors are typically expressed as pairs, called *persistence pairs* of M, of the kind (r_k, ∞) and (p_j, q_j)

Intuitively:

Given a filtration $\mathcal{F} := \{ K^p \}_{p \in \mathbb{N}}, a \text{ persistence pair } (p,q) \in \mathbb{N} \times (\mathbb{N} \cup \{\infty\}) \text{ with } p < q$ represents a **homological class** that is **born at step p** and **dies at step q**

Intuitively:

Given a filtration $\mathcal{F} := \{ K^p \}_{p \in \mathbb{N}}, a \text{ persistence pair } (p,q) \in \mathbb{N} \times (\mathbb{N} \cup \{\infty\}) \text{ with } p < q$ represents a **homological class** that is **born at step p** and **dies at step q**

Intuitively:

Given a filtration $\mathcal{F} := \{ K^p \}_{p \in \mathbb{N}}, a \text{ persistence pair } (p,q) \in \mathbb{N} \times (\mathbb{N} \cup \{\infty\}) \text{ with } p < q$ represents a **homological class** that is **born at step p** and **dies at step q**

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

It is possible to *compare two shapes* by comparing their *homology groups*

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

It is possible to compare two shapes by comparing their hor persistence pairs persistence aps

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

It is possible to *compare two shapes* by comparing their *hop* **PERSISTENCE PAIR**

In order to better perform the above task, we need:

- Visual and descriptive representations for persistence pairs
- Notions of *distance* between sets of persistence pairs and *stability results*

Bibliography

Some References:

- Persistent Homology:
 - U. Fugacci, S. Scaramuccia, F. Iuricich, L. De Floriani. *Persistent homology: a step-by-step introduction for newcomers*. Eurographics Italian Chapter Conference, pages 1-10, 2016.

(Persistent) Homology allows for assigning to any (filtered) simplicial complex topological information expressed in terms of algebraic structures

We address two main questions:

- Can this topological information be characterized in a simpler and "more visualizable" way?
- Is this information stable under small perturbations of the input data?

Visualizing Persistence

 \subseteq

 \subseteq

Given a filtration ${\cal F}$,

Persistent pairs of \mathcal{F} can be visualized through:

- Barcodes [Carlsson et al. 2005; Ghrist 2008]
- Persistence diagrams [Edelsbrunner, Harer 2008]
- Persistence landscapes [Bubenik 2015]
- Corner points and lines [Frosini, Landi 2001]
- Half-open intervals [Edelsbrunner et al. 2002]
- *k-triangles* [Edelsbrunner et al. 2002]

Visualizing Persistence

Visualizing Persistence

Visualizing Persistence

Persistence Landscapes:

Persistence landscapes are statistics-friendly representations of persistence pairs

Given a persistence module M, persistence landscapes

- Consist of a collection of 1-Lipschitz functions
- Lie in a vector space
- Are *stable* (under small perturbations of the input filtration)

Image from [Bubenik 2015]

Visualizing Persistence

Visualizing Persistence

Bibliography

Some References:

- Persistent Homology:
 - U. Fugacci, S. Scaramuccia, F. Iuricich, L. De Floriani. *Persistent homology: a step-by-step introduction for newcomers*. Eurographics Italian Chapter Conference, pages 1-10, 2016.

Persistence & Stability

In order to be adopted in real applicative domains, it is crucial that

persistent homology is not affected by noisy data and small perturbations

*The term "distance" is intended in a broad sense, including pseudo-metrics and dissimilarity measures

Distances:

- + For the Data in Input:
 - * Natural pseudo-distance of shapes
 - ✤ L_∞-distance of filtering functions
 - * Gromov-Hausdorff distance of metric spaces/point clouds
- For the Retrieved Persistent Homology Information:
 - Interleaving distance of persistence modules
 - * Bottleneck (a.k.a. Matching) distance of persistence diagrams
 - Hausdorff distance of persistence diagrams
 - Wasserstein distances of persistence diagrams

Distances for Input Data:

Let (X, f) be a *pair* such that:

- * X is a (triangulable) topological space
- f: $X \rightarrow \mathbb{R}$ is a *continuous function*

A pair (X, f) induces a *filtration*:

+ $X^t := f^{-1}((-\infty, t])$

Image from [Ferri et al. 2015]

Definition:

The function f is called **tame** if:

- f has a finite number of homological critical values (i.e. the "time" steps in which homology changes)
- For any $k \in \mathbb{N}$ and $t \in \mathbb{R}$, the homology group $H_k(X^t, \mathbb{F})$ has finite dimension

Distances for Input Data:

Definition:

Given two pairs (X, f) and (Y, g), their natural pseudo-distance d_N is defined as:

$$d_N\Big((X,f),(Y,g)\Big) := \begin{cases} \inf_{h \in H(X,Y)} \{\max_{x \in X} \{|f(x) - g \circ h(x)|\} \} \\ +\infty & \text{if } H(X,Y) = \emptyset \end{cases}$$

where H(X, Y) is the set of all the homeomorphisms between X and Y

Distances for Input Data:

Working with two functions f, g: $X \to \mathbb{R}$ defined on the same topological space X, one can simply consider the L_{∞} -distance between f and g

Image from [Rieck 2016]

Distances for Input Data:

Given two *finite metric spaces* (X, d_x), (Y, d_Y) (e.g. two finite point clouds in \mathbb{R}^n),

Definitions:

A correspondence C: $X \Rightarrow Y$ from X to Y is a subset of $X \times Y$ such that the canonical projections $\pi_X: C \rightarrow X$ and $\pi_Y: C \rightarrow Y$ are both surjective

The distortion dis(C) of a correspondence C: $X \Rightarrow Y$ is defined as:

$$dis(C) := \sup \left\{ |d_X(x, x') - d_Y(y, y')| : (x, y), (x', y') \in C \right\}$$

The Gromov-Hausdorff distance d_{GH} between (X, d_X) and (Y, d_Y) is defined as:

$$d_{GH}(X,Y) := \frac{1}{2} \inf \{ dis(C) \, | \, C : X \rightrightarrows Y \text{ is a correspondence} \}$$

Distances for Persistent Homology Information:

Two persistence modules M and N are called ε -interleaved with $\varepsilon \ge 0$ if there exist f and g such that, for any p, $q \in \mathbb{R}$ with $p \le q$, the following diagrams commute

Distances for Persistent Homology Information:

Definitions:

Given two persistence diagrams D_1 and D_2 ,

their bottleneck distance d_B and Hausdorff distance d_H are defined as:

$$d_B(D_1, D_2) := \inf_{\gamma} \left\{ \sup_{x \in D_1} \{ \|x - \gamma(x)\|_{\infty} \} \right\}$$

$$d_H(D_1, D_2) := \max\left\{\sup_{x \in D_1} \left\{\inf_{y \in D_2} \{\|x - y\|_\infty\}\right\}, \sup_{y \in D_2} \left\{\inf_{x \in D_1} \{\|y - x\|_\infty\}\right\}\right\}$$

where γ ranges over all bijections from D_1 to D_2

Distances for Persistent Homology Information:

Definitions:

Given two persistence diagrams D₁ and D₂,

their bottleneck distance d_B and Hausdorff distance d_H are defined as:

$$d_B(D_1, D_2) := \inf_{\gamma} \left\{ \sup_{x \in D_1} \{ \|x - \gamma(x)\|_{\infty} \} \right\}$$

$$d_H(D_1, D_2) := \max\left\{\sup_{x \in D_1} \left\{\inf_{y \in D_2} \{\|x - y\|_\infty\}\right\}, \sup_{y \in D_2} \left\{\inf_{x \in D_1} \{\|y - x\|_\infty\}\right\}\right\}$$

where γ ranges over all bijections from D_1 to D_2

Stability Results:

Given two pairs (X, f), (Y, g) of topological spaces and *tame* functions and $k \in \mathbb{N}$, let M, N be the induced kth persistence modules and let D₁, D₂ be the corresponding persistence diagrams

•
$$d_H(D_1, D_2) \le d_B(D_1, D_2)$$

$$\bullet \quad d_I(M,N) = d_B(D_1,D_2)$$

Theorem:

Under the above hypothesis, the following **optimal lower bound** holds

$$d_I(M,N) \le d_N\Big((X,f),(Y,g)\Big)$$

Stability of Persistence

Stability Results:

Theorem:

Given two finite metric spaces (X, d_X), (Y, d_Y), $k \in \mathbb{N}$, and D_X , D_Y the k^{th} persistence

diagrams of the filtrations of the Vietoris-Rips complexes generated by X and Y,

$$d_B(D_X, D_Y) \le d_{GH}(X, Y)$$

Bibliography

Some References:

- Stability Results:
 - D. Cohen-Steiner, H. Edelsbrunner, J. Harer. *Stability of persistence diagrams*. Discrete & Computational Geometry 37.1, pages 103-120, 2007.
 - F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, S. Y. Oudot. *Proximity of persistence modules and their diagrams*. Proc. of the 35 annual symposium on Computational Geometry, pages 237-246, 2009.
 - F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, S. Y. Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. Computer Graphics Forum 28.5, pages 1393-1403, 2009.

Computing Persistence

Topological Data Analysis allows for assigning to (almost) *any dataset* a collection of features representing a *topological summary* of the input data

- How to efficiently compute (persistent) homology?
- + How to compactly encode simplicial complexes of high dimension and large size?

Persistent Homology Computation

Given a filtered simplicial complex, let us consider its *filtering function f*:

A sequence σ_1 , σ_2 , ..., σ_n of the simplices of K such that:

- if $f(\sigma_i) < f(\sigma_j)$, then i < j
- if σ_i is a proper face of σ_j , then i < j

Given a filtered simplicial complex, let us consider its *filtering function f*:

Boundary Matrix:

A square matrix **D** of size *n* x *n* defined by

$$D_{i,j} := \begin{cases} 1 & \text{if } \sigma_i \text{ is a face of } \sigma_j \text{ s.t. } \dim(\sigma_i) = \dim(\sigma_j) - 1 \\ 0 & \text{otherwise} \end{cases}$$

Reduced Matrix:

Given a non-null column *j* of a boundary matrix *D*,

 $low(j) := max \{ i \mid D_{i,j} \neq 0 \}$

A matrix **R** is called **reduced** if, for each pair of non-null columns j_1 , j_2 ,

 $low(j_1) \neq low(j_2)$

Equivalently, if low function is *injective* on its domain of definition

Persistent Homology Computation

j < 12 $i \setminus j$ lowFor each *j* < 12, there is **no** *j* **' '** *s* uch that *low(j') = low(j)* So, increase j by 1

Istituto di Matematica Applicata e Tecnologie Informatiche «Enrico Magenes»
12 < j < 19 $i \setminus j$ $\mathbf{2}$ lowFor each *12 < j < 19*, there is **no** *j* **' '** *s* uch that low(j') = low(j)So, increase j by 1

Istituto di Matematica Applicata e Tecnologie Informatiche «Enrico Magenes»

Istituto di Matematica Applicata e Tecnologie Informatiche «Enrico Magenes»

19 < j < 22 $i \setminus j$ $\mathbf{2}$ lowFor each *19 < j < 22*, there is **no** *j* **' '** *s* uch that low(j') = low(j)So, increase j by 1

Retrieving Persistence Pairs:

For each *i* = 1, ..., n,

if there exists *j* such that *low(j) = i* [*i, j*] is a pair for *R*

Once every i has been parsed,

if *i* is an **unpaired** value

From pairs of R to the "actual" persistence pairs of $\{K^p\}_p$:

[*i*, *j*] corresponds to $[f(\sigma_i), f(\sigma_j)]$

(homological degree = $dim(\sigma_i)$)

 $[i, \infty)$ corresponds to $[f(\sigma_i), \infty)$

Persistent Homology Computation

H ₀	i i	1	2	3	Δ	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
[1, ∞)	$1^{\iota \setminus j}$	1		0	Т	0	0	1	1	5	10	11	14	10	11	10	10	11	10	10	20	21		20
	2									1			1											
[2 , ∞)	3										1		1											
[0 (0]	4								1			1						1	1					
[3, 12]	5											1												
[1 8]	6									1	1										1	1		
[+, 0]	(0										1											1		
[5, 11]	9																							
	10																							
[0, 9]	11																							
[7, 10]	12																							
	13																	1						
[13, 17]	14																		1					
[14 18]	15																				1			
[14, 10]	10																					1		1
[15, 20]	11																							1
[16 21]	10																							
[10, 21]	$\frac{10}{20}$																							
H1	21																							
[10]	22																							1
[⊥ 3, ∞]	23																							
[22, 23]	low								4	6	7	5	3					13	14		15	16		22

Persistent Homology Computation

H ₀		f 🛉		22			
<i>[1,</i> ∞)	[1, ∞)	3 -	13	22	14 1	15 •	•16
[2 , ∞)	[1, ∞)		17	23	<i>19 2</i>	20	21
[3, 12]	[1, 2]	2		10			7
[4, 8]	[2, 2] [2, 2]	Ζ -	4 -	11	• 5	12	
[6, 9]	[2, 2]		8			9	10
[7, 10]	[2, 2]	1 -	1			2 •	• 3
[13, 17]	[3, 3]						
[14, 18]	[3, 3]						
[15, 20]	[3, 3]		Ц.	<i>[19,</i> ∞)		[3, ∞)	
[16, 21]	[3, 3]		Π 1	[22, 23]	4	[3, 3]	

Standard algorithm to compute (persistent) homology [Zomorodian & Carlsson 2005]:

- Based on a matrix reduction
- Linear complexity in practical cases
- Cubic complexity in the worst case

Several different strategies:

Direct approaches:

- Zigzag persistent homology [Milosavljević et al. '05]
- *Computation with a twist* [Chen, Kerber '11]
- **Dual algorithm** [De Silvia et al. '11]
- *Output-sensitive algorithm* [Chen, Kerber '13]
- Multi-field algorithm [Boissonnat, Maria '14]
- Annotation-based methods [Boissonnat et al. '13; Dey et al. '14]
 Distributed persistent computation [Bauer et al. '14b]

Distributed approaches:

- Spectral sequences [Edelsbrunner, Harer '08; Lipsky et al. '11]
- Constructive Mayer-Vietoris [Boltcheva et al. '11]
- Multicore coreductions [Murty et al. '13]
- Multicore homology [Lewis, Zomorodian '14]
- Persistent homology in chunks [Bauer et al. '14a]

Coarsening approaches:

- **Topological operators and simplifications** [Mrozek, Wanner '10; Dłotko, Wagner '14]
- Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Direct Approaches:

- Zigzag persistent homology [Milosavljević et al. '05]
- *Computation with a twist* [Chen, Kerber '11]
- Dual algorithm [De Silvia et al. '11]
- Output-sensitive algorithm [Chen, Kerber '13]
- *Multi-field algorithm* [Boissonnat, Maria '14]
- Annotation-based methods [Boissonnat et al. '13; Dey et al. '14]

Distributed Approaches:

- Spectral sequences [Edelsbrunner, Harer '08; Lipsky et al. '11]
- Constructive Mayer-Vietoris [Boltcheva et al. '11]
- Multicore coreductions [Murty et al. '13]
- Multicore homology [Lewis, Zomorodian '14]
- **Persistent homology in chunks** [Bauer et al. '14a]
- Distributed persistent computation [Bauer et al. '14b]

Coarsening Approaches:

• **Topological operators and simplifications** [Dłotko, Wagner '14]

- Acyclic subcomplexes [Mrozek et al. '08]
- ✤ Reductions and coreductions [Mrozek et al. '10]
- ✤ Edge contractions [Attali et al. '11]

Coarsening Approaches:

• **Topological operators and simplifications** [Dłotko, Wagner '14]

- * Acyclic subcomplexes [Mrozek et al. '08]
- ✤ Reductions and coreductions [Mrozek et al. '10]
- ✤ Edge contractions [Attali et al. '11]

Coarsening Approaches:

• **Topological operators and simplifications** [Dłotko, Wagner '14]

- Acyclic subcomplexes [Mrozek et al. '08]
- * Reductions and coreductions [Mrozek et al. '10]
- ✤ Edge contractions [Attali et al. '11]

Coarsening Approaches:

Topological operators and simplifications [Dłotko, Wagner '14]

- Acyclic subcomplexes [Mrozek et al. '08]
- ✤ Reductions and coreductions [Mrozek et al. '10]
- * Edge contractions [Attali et al. '11]

Coarsening Approaches:

• **Topological operators and simplifications** [Dłotko, Wagner '14]

- Acyclic subcomplexes [Mrozek et al. '08]
- ✤ Reductions and coreductions [Mrozek et al. '10]
- ✤ Edge contractions [Attali et al. '11]

Bibliography

Some References:

- Persistent Homology Computation:
 - A. Zomorodian, G. Carlsson. *Computing persistent homology*. Discrete & Computational Geometry, 33.2, pages 249-274, 2005.
 - N. Otter, M.A. Porter, U. Tillmann, P. Grindrod, H.A. Harrington. A roadmap for the computation of persistent homology. EPJ Data Science, 6.1, 2017.

Data Structures

Encoding Simplicial Complexes

It is enough to have a point cloud consisting of at least **30 points** for having to deal with an associated filtered simplicial complex of more than a **billion** of simplices

Solution:

Issue:

Development of compact and efficient data structures for encoding arbitrary simplicial complexes

Encoding Simplicial Complexes

Outline:

- Which info to be stored?
- Data Structures
 - * Simplex-based representations
 - * Top-based representations
 - * **Operator-driven** representations
- Comparisons
- Issues and solutions in adopting top-based representations

Out Of Scope:

- Data structures for specific classes of complexes
 - * E.g. manifold or complexes of low dimension

Encoding Simplicial Complexes

Data Structure:

The *entities* which a simplicial complex consists of are:

its simplices

 $\mathsf{K} = \mathsf{K}_0 \cup \mathsf{K}_1 \cup \ldots \cup \mathsf{K}_d$

where $K_{i}\xspace$ is the collection of the i-simplices of K

the topological relations

 $\mathsf{R}_{i,j} \subseteq \mathsf{K}_i \times \mathsf{K}_j$

between the simplices of K encoding the (co-)boundary of each simplex

A data structure for K has to explicitly store a portion of the above information and to (efficiently) retrieve the remaining part

Store all the entities	Efficiency	
		Compactness
 Simplex-based representations Top-based representations Operator-driven representations 		Store only the top simplices

Store all the entities Incidence Graph	Efficiency	
		Compactness
Simplex-based representations		
 Top-based representations 		Store only the top simplices
Operator-driven representations		top simplices

Encoding Simplicial Complexes

Simplex-based Representations

All the relations between simplices can be immediately retrieved The representation *size exponentially increases* with the complex dimension

Simplex-based Representations

where $I(\sigma)$ denotes the maximum value taken by the vertices of σ w.r.t. a total order on K₀

Graph is **not uniquely determined** but it depends on the chosen vertex order

Simplex-based Representations

where $I(\sigma)$ denotes the maximum value taken by the vertices of σ w.r.t. a total order on K₀

Graph is **not uniquely determined** but it depends on the chosen vertex order

Top-based Representations

Top-based Representations

$$N \longleftrightarrow (K_0 = V_1 \cup V_2 \cup \ldots \cup V_n) \cup K_{top}$$

 $(\sigma, \tau) \in \mathbf{A} \leftrightarrow \sigma \in \mathbf{K}_{top} \text{ and } (\sigma, \tau) \in \mathbf{R}_{i,0}$

plus a map returning, for each j, the vertices of K in V_j and the top simplices with at least one vertex in V_j

Compact and highly adjustable (e.g. choice of the decomposition, of the maximum number of vertices in each region)

Not all the relations between simplices are immediately available

Operator-driven Representations

The simplicial complex K is encoded by storing its *1-skeleton* (i.e. the graph consisting of the 0- and the 1-simplices) and a *map* returning, for each 1-simplex σ , the blockers of K containing σ , where:

A simplex τ is a **blocker** if τ does not belong to K but all its faces do

Designed for flag complexes (e.g. **VR complexes**) and edge contraction Too specific: **inefficient in any other task**

Encoding Simplicial Complexes

Top-based vs Simplex-based:

Dataset	d	$ \Sigma_0 $	$ \Sigma_{top} $	$ \Sigma $	Storage Cost		
					IA^*	IG	ST
DTI-SCAN	3	$0.9\mathrm{M}$	$5.5\mathrm{M}$	$24\mathrm{M}$	0.97	11.9	2.4
VISMALE	3	4.6M	$26\mathrm{M}$	118M	4.7	-	9.7
Ackley4	4	$1.5\mathrm{M}$	$32\mathrm{M}$	$204 \mathrm{M}$	6.8	-	12.8
Amazon01	6	0.2M	0.4M	$2.2\mathrm{M}$	0.12	1.6	0.3
Amazon02	7	0.4M	1.0M	$18.4\mathrm{M}$	0.28	9.8	1.5
Roadnet	3	$1.9\mathrm{M}$	$2.5\mathrm{M}$	$4.8\mathrm{M}$	0.8	3.3	1.0
Sphere-1.0	16	100	224	0.6M	0.003	0.9	0.04
$\operatorname{Sphere-1.2}$	21	100	285	$26\mathrm{M}$	0.0032	-	1.5
Sphere- 1.3	23	100	382	$197 \mathrm{M}$	0.0034	-	11.01

Encoding Simplicial Complexes

Encoding Simplicial Complexes

Top-based vs Operator-driven:

data	Ø		contr.	timings			memory peak	
			edges	check	contr.	tot	gen.	simpl.
CHICAGO CHICAGO 28 CHICAGO 56		weak		9.15h	2.27 <i>m</i>	9.19h	5.6	57.2K
	28	top	6.38K	0.01s	0.02s	0.09s	5.0	7.6
		Skel.		0.00s	0.15s	0.15s	7.8	7.8
		weak		out-of-memory			()	_
	56	top	7.99K	0.04 <i>s</i>	0.06s	0.23s	6.2	10.8
	Skel.		0.00s	0.71 <i>s</i>	0.71 <i>s</i>	14.1	14.1	
S 63 HLV 126		weak		out-of-memory			11.6	_
	63	top	27.9K	0.08s	0.11s	0.38s	11.6	14.9
	Skel.		0.00s	0.74 <i>s</i>	0.75s	26.4	26.8	
		weak	out-of-m			ory	10.0	_
	126	top	31.2K	0.40s	0.49s	1.36s	10.0	25.9
		Skel.		0.01s	7.73s	7.74 <i>s</i>	66.1	66.7
AISMALE 3.5		weak	4.23M	34.3 <i>m</i>	1.28m	40.4m	1.0K	2.0K
	3.5	top		4.34m	0.89m	7.20m		2.0K
		Skel.		0.76 <i>m</i>	3.34h	3.35h	8.0K	8.0K
LOO ₄ .5		weak		killed	after 25	hours	7.5K	_
	4.5	top	4.69M	2.89h	26.0m	3.32h		10.7K
		Skel.		killed after 25 hours			19.4K	-
логодина. 1.5		weak		killed after 25 hours			7 5V	_
	1.5	top	14.0M	11.9m	14.8 <i>m</i>	32.0m	/.5K	15.4K
		Skel.		23.19 <i>s</i>	14.6h	14.6 <i>h</i>	50.9K	52.1K

Encoding Simplicial Complexes

Possible Issues in Top-based Representations:

Top-based representations are promising data structures for encoding a simplicial complex K

but, how to ...

Store information associated to each simplex of K (e.g. labels, gradient, ...)?

Attach information to the top simplices only

Efficiently perform operators having explicitly stored a fraction of the entities of K?

Re-define the algorithms performing the operators trying to extract the lowest possible amount of non-explicitly stored entities

Bibliography

Some References:

- Data Structures for Arbitrary Simplicial Complexes:
 - D. Canino, L. De Floriani, K. Weiss. IA*: an adjacency-based representation for non-manifold simplicial shapes in arbitrary dimensions. Computers & Graphics, 35.3, pages 747-753, 2011.
 - D. Attali, A. Lieutier, D. Salinas. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. International Journal of Computational Geometry & Applications, 22.4, pages 279-303, 2012.
 - J.D. Boissonnat, C. Maria. *The simplex tree: An efficient data structure for general simplicial complexes.* Algorithmica, 70.3, pages 406-427, 2014.
 - R. Fellegara, K. Weiss, L. De Floriani. The Stellar tree: a compact representation for simplicial complexes and beyond. arXiv preprint:1707.02211, 2017.
 - U. Fugacci, F. Iuricich, L. De Floriani. Computing discrete Morse complexes from simplicial complexes.
 Graphical models, 103, 101023, 2019.
 - R. Fellegara, F. Iuricich, L. De Floriani, U. Fugacci. *Efficient Homology-Preserving Simplification of High- Dimensional Simplicial Shapes.* Computer Graphics Forum, 39.1, pages 244-259, 2020.

Possible Topics for Seminars

Discrete Morse Theory

Study the shape of a space by studying the behavior of a function defined on it

Possible Topics for Seminars

Image courtesy of [Carlsson & Zomorodian 2009]

Multi-Parameter Persistent Homology

What if we consider multiple filtering functions?

Possible Topics for Seminars

Persistent Homology & Networks

Homological Scaffolds: Topological summaries of weighted graphs
 Clique Community Persistence: Tracking the evolution of network communities

Possible Topics for Seminars

Algorithms & Implementation

- Efficient computation of Vietoris-Rips complexes and other data-to-complex strategies
- Focus on a specific algorithm for speed-up persistent homology computation
- Use of available **software tools** for testing persistent homology on various datasets