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Topology describes, characterizes, and discriminates shapes by studying 
their properties that are preserved under continuous deformations,    

such as stretching and bending, but not tearing or gluing

Topological Data Analysis



Assumption in TDA: Any data can be endowed with a shape. 
So, any data can be studied in terms of its topological features

Topological Data Analysis



Topological Data Analysis

Data

Features Shape
Compute the topological features of 

the retrieved shape

Exploit the extracted features 
to describe, characterize,   

and discriminate data
Associate a topological 
structure to a dataset
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The Notion of Shape



Geometry or Topology?

Which of these domains look similar?



Geometry or Topology?

And what about these ones?



Geometry or Topology?

The answer depends on the point of view we adopt

E.g. length, area, volume, angles, curvature, …

Geometry cares about those properties which change  
when an object is continuously deformed



Geometry or Topology?

The answer depends on the point of view we adopt

Geometry cares about those properties which change  
when an object is continuously deformed

Topology do not{
E.g. connectivity, orientation, manifoldness, …



Homeomorphisms
Definition:

Given two topological spaces (X, T) and (X’, T’),                                                          
a function f: X →	X’ is called homeomorphism if: 

✦ f is a bijection 
✦ f is continuous  
✦ f -1 is continuous

f -1

f 
X X’ 

Two topological spaces (X, T) and (X’, T’) are homeomorphic and denoted X ≅ X’ 
if there exists a homeomorphism f: X →	X’  
Homeomorphisms induce an equivalence relation of topological spaces 
partitioning them into equivalence classes 



Homeomorphisms
Intuitively:

The notion of homeomorphism captures the idea of continuous deformation

≅



Homeomorphisms

One can:

Intuitively:



Homeomorphisms

One can:

✦ Stretch

Intuitively:



Homeomorphisms

One can:

✦ Stretch
✦ Compress

Intuitively:



Homeomorphisms

One can:

✦ Stretch
✦ Compress

But not too much!

Intuitively:



Homeomorphisms

Moreover:

Intuitively:



Homeomorphisms

Moreover:

✦ No Cut

Intuitively:



Homeomorphisms

Moreover:

✦ No Cut
✦ No Glue

Intuitively:



Definition:

I is a topological invariant if, given two topological spaces (X, T) and (X’, T’),

X

X is homeomorphic to X’

X’

≌

X and X’ have the same 
topological invariant

I(X) = I(X’)

Some classical topological invariants: 

✦ Connectedness 
✦ Compactness 
✦ Manifoldness 

✦ Orientability 
✦ Euler characteristic 
✦ Homology 
✦ Homotopy 

Topological Invariants



Question:

Is there a “perfect” topological invariant I such that 

 X ≅ X’ if and only if I(X) = I(X’)?

Topological Invariants



Question:

Is there a “perfect” topological invariant I such that 

 X ≅ X’ if and only if I(X) = I(X’)?

Topological Invariants

Let us simplify the question and let focus on: 
✦ Considering a specific topological invariant I (e.g. the homology) 
✦ Completely characterizing just the spheres Sn := { x ∊ ℝn : |x| = 1 } 

The above question turns into the following:

If X and Sn have the same homology, then X ≅ Sn?



Question:

Is there a “perfect” topological invariant I such that 

 X ≅ X’ if and only if I(X) = I(X’)?

Topological Invariants

Let us simplify the question and let focus on: 
✦ Considering a specific topological invariant I (e.g. the homology) 
✦ Completely characterizing just the spheres Sn := { x ∊ ℝn : |x| = 1 } 

The above question turns into the following:

If X and Sn have the same homology, then X ≅ Sn?

NO



But:

Topological Invariants

Replacing homology with homotopy, the answer is positive!



But:

Topological Invariants

Replacing homology with homotopy, the answer is positive!

If X is a closed n-manifold homotopy equivalent to Sn, then X ≅ Sn

Poincaré Conjecture (3rd Millennium Prize Problem):

Proven by Grigori Perelman in 2003
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But:

Topological Invariants

Replacing homology with homotopy, the answer is positive!

If X is a closed n-manifold homotopy equivalent to Sn, then X ≅ Sn

Poincaré Conjecture (3rd Millennium Prize Problem):

Proven by Grigori Perelman in 2003

So: Why we will mainly focus on homology rather than homotopy?



But:

Topological Invariants

Replacing homology with homotopy, the answer is positive!

If X is a closed n-manifold homotopy equivalent to Sn, then X ≅ Sn

Poincaré Conjecture (3rd Millennium Prize Problem):

Proven by Grigori Perelman in 2003

So: Why we will mainly focus on homology rather than homotopy?

Because, in practice, computing homotopy groups is nearly impossible!
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Simplicial Complexes



Complexes & Data 
Goal:

Data Shape

We want to associate a topological 
structure to a given dataset 

Due to the nature of data and to  
our computational ambitions, datasets will be represented by “discrete” structures 

Among various possibilities, simplicial complexes  
represent the most suitable choice 

In fact, simplicial complexes are able to deal with data: 

✦ of large size (e.g. consisting of a huge number of samples) 
✦ of high dimension (e.g. involving a large number of variables or parameters) 
✦ unorganized (e.g. not arranged in a regular grid)



Simplicial Complexes

Definitions:

A set V := { v0 , v1 , ..., vk  } of points in ℝn is called                                                    
geometrically independent if vectors v1 − v0, ..., vk − v0 are linearly independent over ℝ 

E.g. two distinct points, three non-collinear points, four non-coplanar points 

The k-simplex 𝝈 = v0 v1 … vk  spanned by a geometrically independent set V = {v0 ,v1 ,...,vk } 
of in ℝn is the convex hull of V, i.e. the set of all points x ∈ ℝn such that   
 

The numbers ti are uniquely determined by x and are called barycentric coordinates of x 
E.g. a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron 

wherex =
kX

i=0

tivi
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kX

i=0

ti = 1
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and ti  ≥ 0 for all i



Simplicial Complexes
Definitions:

✦ The points v0 , v1 , ..., vk spanning a k-simplex 𝝈 are called the vertices of 𝝈 

✦ k is called the dimension of 𝝈 and denoted as dim(𝝈) 
✦ Any simplex 𝝉 spanned by a non-empty subset of V is called a face of 𝝈 
✦ Conversely, 𝝈 is called a coface of 𝝉



Simplicial Complexes
Definition:

A (geometric) simplicial complex K in ℝn is a collection of simplices in ℝn such that  

✦ Every face of a simplex of K is in K 

✦ The non-empty intersection of any two simplices of K is a face of each of them 

simplicial complex non-simplicial complex



Simplicial Complexes

Given a (geometric) simplicial complex K in ℝn,  

✦ The dimension of a simplicial complex K  
in ℝn, denoted as dim(K), is the supremum  
of the dimensions of the simplices of K 

✦ A simplex 𝝈 of K such that dim(𝝈) = dim(K) is called maximal 

✦ A simplex 𝝈 of K which is not a proper face of any simplex of K is called top 

✦ A subcollection of K that is itself a simplicial complex is called a subcomplex of K

Definitions:



Simplicial Complexes
Definitions:

Given a simplex 𝝈 of a (geometric) simplicial complex K in ℝn,  
✦ The star of 𝝈 is the set St(𝝈) of the cofaces of 𝝈 

✦ The link of 𝝈 is the set Lk(𝝈) of the faces of the simplices in St(𝝈) such that                
do not intersect 𝝈



Simplicial Complexes
Definitions:

Given a simplex 𝝈 of a (geometric) simplicial complex K in ℝn,  
✦ The star of 𝝈 is the set St(𝝈) of the cofaces of 𝝈 

✦ The link of 𝝈 is the set Lk(𝝈) of the faces of the simplices in St(𝝈) such that                
do not intersect 𝝈



Simplicial Complexes
Given a (geometric) simplicial complex K in ℝn,  
its polytope |K| is the subset of ℝn defined as the union of the simplices of K 

The polytope |K| can be endowed with two possible topologies T1 and T2: 

✦ T1 :  A subset F of |K| is a closed set of (|K|, T1) if and only if F ∩ 𝝈 is a closed set 
of (𝝈 , T𝝈) for each 𝝈 in K where T𝝈 is the subspace topology induced on 𝝈 by 𝔼n 

✦ T2 :  The subspace topology induced on |K| by 𝔼n 

In general, the two topologies T1, T2 are different, but

Proposition: If K is a finite simplicial complex, T1 = T2

From now on, if not differently specified, we consider only finite simplicial complexes 



Simplicial Complexes

Proposition:

Given a simplicial complex K and a topological space (X, T), a function f from (|K|, T1) to 
(X, T) is continuous if and only if f|𝝈 is continuous for each 𝝈 ∈ K 

Definition:

Given two simplicial complexes K and K’,  

✦ A function f: K → K’ is called a simplicial map if for every simplex 𝝈 = v0v1 … vk in K, 
f(𝝈) = f(v0)f(v1)… f(vk) is a simplex in K’ 

✦ The restriction fV of f to the set of vertices V of K is called the vertex map of f 



Simplicial Complexes
Definition:

An abstract simplicial complex K on a set V is a collection of finite non-empty subsets 
of V, called simplices, such that if 𝝈 ∈ K and 𝝉 ⊆ 𝝈, then 𝝉 ∈ K  
Analogously to the case of a geometric simplicial complex,  
✦ The elements of V are called vertices of K 
✦ The dimension of a simplex 𝝈 is one less than the number of its elements  
✦ The supremum of the dimensions of the simplices in K is called dimension of K 
✦ Each non-empty subset 𝝉 of a simplex 𝝈 ∈ K is called a face of 𝝈 and 𝝈 is called a coface of 𝝉  

The notions of geometric simplicial complex and abstract simplicial complex are 
equivalent. More properly, it is always possible, 
✦ Given an abstract simplicial complex, to endow it with a geometric realization 
✦ Given a geometric simplicial complex, to forget its geometry thus obtaining an 

abstract simplicial complex 



Simplicial Complexes
Definition:

✦ n-manifold [with boundary] if its polytope |K| is a (topological) n-manifold [with 
boundary] 

✦ Combinatorial n-manifold [with boundary] if, for every vertex v, the link Lk(v) is 
homeomorphic to the (n − 1)-sphere Sn-1 [or to the (n − 1)-disk Dn-1

 := {x ∊ ℝn-1 : |x|≤ 1}]

Proposition:

If K is a combinatorial n-manifold [with boundary], then K is a n-manifold [with boundary] 

The converse is: True for n ≤ 3 False for n > 4Open for n = 4

A simplicial complex K is called

combinatorial 
manifold

non-combinatorial 
manifold



Regular Grids
Hyper-Cube:

A k-hyper-cube η is the Cartesian product of k closed intervals of equal length

Regular Grids:

A regular grid H is a (finite) collection of hyper-cubes 
such that: 

✦ Each face of a hyper-cube of H is in H 
✦ Each non-empty intersection of two hyper-cubes in H 

is a face of both 
✦ The domain of H is a hyper-cube



Cell Complexes

Similarly to simplicial complexes and regular grids, 

Intuitively:

A cell complex Γ is a collection of cells “suitably glued together”

Where a k-cell is a topological space homeomorphic to the k-dimensional open disk i(Dk)
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Simplicial Homology



Simplicial Homology
Given a topological space X, the homology of X is a topological invariant 

detecting the “holes” of X 

capturing the independent non-bounding cycles of X 

measuring how far the chain complex associated with X is from being exact in
tu

iti
on

form
alism

<latexit sha1_base64="ElgM05LF38gqb42BGWrOyMVbhEU="></latexit>

Hk(X;Z) ⇠=

8
>>><

>>>:

Z for k = 0

Z6 for k = 1

Z for k = 2

0 otherwise



Simplicial Homology

Topological  
Space

Algebraic 
Structure

Simplicial 
Complex 

K

Chain 
Complex 

C*(K)

Simplicial 
Homology 

H*(K)



Simplicial Homology
Given a simplicial complex K, 

✦ a k-chain is a formal sum (with ℤ2 coefficients) of k-simplices of K

a b

c

d
e

f

g

Examples:

✦ a + b + e  is a 0-chain  

✦ fg + dg + de + eg  is a 1-chain  

✦ abg + afg is a 2-chain 



Simplicial Homology
The chain complex C*(K) associated with K consists of: 

✦ a collection {Ck(K)}k∈ℤ of vector spaces where Ck(K) is the group of the k-chains of K 

✦ a collection {∂k}k∈ℤ of linear maps where the boundary map  ∂k :  Ck(K) ⟶ Ck-1(K)    is 
defined by

v0 v0

v2 v2

v1v1

∂2



Simplicial Homology

a b

c

d
e

f

g

Examples:

✦ ∂1( ab ) = a + b

✦ ∂1( ab + bc ) = a + 2b + c = a + c

✦ ∂2( afg + efg ) = af + ag + 2fg + ef + eg = 
= af + ag + ef + eg

✦ ∂1( af + ag + ef + eg ) =                             
= 2a + 2f + 2g + 2e = 0



Simplicial Homology
Properties:

✦ For k < 0 or k > dim(K), Ck(K) is the null group 

✦ For k ≤ 0 or k > dim(K), ∂k is the null map  

✦ For any k ∈ ℤ, ∂k∘∂k+1 = 0 

✦ For any k ∈ ℤ, Im(∂k+1) ⊆ Ker(∂k)



Simplicial Homology

Definition:

A k-chain c is called: 

✦ k-cycle if c ∈ Ker(∂k) 

✦ k-boundary if c ∈ Im(∂k+1)

Each k-boundary is a k-cycle



Given a simplicial complex K, the k-homology group Hk(K) of K is defined as

where: 

✦ Zk(K) is the group of k-cycles of K 

✦ Bk(K) is the group of k-boundaries of K

Hk(K) := Zk(K)/Bk(K)
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Simplicial Homology



Simplicial Homology

ab+ag+bc+cg is homologous to bc+bg+cd+dg

Hk(K) partitions the k-cycles into equivalence classes called homology classes

a b

c

d
e

f

g

Two k-cycles are said homologous 

if they belong to the same 

homology class or, equivalently,   

if their difference is a k-boundary 

Definition:



Simplicial Homology

Each homology group can be expressed as 

𝛽k is called the kth Betti number of K

Theorem:



Simplicial Homology
Examples:

✦ point P 

✦ n-dimensional sphere S n 

✦ torus T



Simplicial Homology

Image from [Dey et al. 2008]

Each homology group can be expressed as 

with

Theorem:

We call: 

✦ 𝛽k , the kth Betti number of K 

✦                      , the torsion coefficients of K 

✦                                        , the homology generators of K

Homology groups can be defined in a more general way by choosing coefficients in ℤ 



Simplicial Homology

Image from [Dey et al. 2008]

Up to isomorphism, the Betti numbers and the torsion coefficients of K 

completely characterize the homology groups of K

Working with coefficients in a field 𝔽 :

Up to isomorphism, the Betti numbers of K 

completely characterize the homology groups of K

Working with coefficients in ℤ :



Example:

Simplicial Homology

The Klein bottle K is a non-orientable 2-dimensional  

manifold embeddable in ℝ4 which can be built from  

a unit square by the following construction



Example:

Simplicial Homology

K has the following homology groups

So, it can be distinguished from a torus T

By considering ℤ as coefficient group, 



Example:

Simplicial Homology

By considering ℤ2 as coefficient group,  

the Klein bottle K and the torus T have isomorphic homology groups

Hk(K;Z2) ⇠=

8
>>><

>>>:

Z2 for k = 0

Z2 � Z2 for k = 1

Z2 for k = 2

0 for k > 2

9
>>>=

>>>;

⇠= Hk(T ;Z2)

<latexit sha1_base64="J7k6gh4Rz75uEBbKtngq8gIZDv4="></latexit>
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From Data to Complexes



From Data to Complexes

Studying the shape of V just by considering the 
space consisting of its points does not provide    

any relevant topological information

The “real” shape of the dataset can be captured   
by properly constructing a complex connecting 

together close points through simplices

Let us consider a dataset represented by a finite point cloud V in ℝn



From Data to Complexes

A number of possible choices have been introduced in the literature: 

✦ Delaunay triangulations 
✤ Voronoi diagrams  

✦ Čech complexes  

✦ Vietoris-Rips complexes 

✦ Alpha-shapes 

✦ Witness complexes 

Most of the above constructions are based on the notion of Nerve complex

Standard Constructions:



From Data to Complexes

Given a finite point cloud V in ℝn,A First Classification:

Output Complex Dimension Dependence on a 
Parameter

Delaunay 
triangulakon

Geometric n

Čech complex Abstract Arbitrary              
(up to |V| - 1)

Vietoris-Rips 
complex

Abstract Arbitrary              
(up to |V| - 1)

Alpha-shapes Geometric n

Witness complexes Abstract Arbitrary              
(up to |V| - 1)



Nerve Complexes

Given a finite collection S of sets in ℝn,

The nerve Nrv(S) of S is the abstract simplicial complex  
generated by the non-empty common intersections 

Definition:

Formally,

Nrv(S) := {� ✓ S |
\

s2�

s 6= ;}

<latexit sha1_base64="u1psp+4EPEXPacdlK8dVzO3BU80="></latexit>



Nerve Complexes

Given a finite collection S of sets in ℝn,

The nerve Nrv(S) of S is the abstract simplicial complex  
generated by the non-empty common intersections 

Definition:

Formally,

Nrv(S) := {� ✓ S |
\

s2�

s 6= ;}
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Nerve Complexes

If S is a finite collection of convex sets in ℝn, then the nerve of S and the union  
of the sets in S are homotopy equivalent (and so they have the same homology)

Nerve Theorem:

≃



Nerve Complexes

If S is an open cover of a (para)compact space X such that                                    
every non-empty intersection of finitely many sets in S is contractible,                  

then X is homotopy equivalent to the nerve Nrv(S)

Original Nerve Theorem:

Nerve Theorem can be generalized by replacing the convexity of sets in S  
with the request that all non-empty common intersections are contractible  

(i.e. that can be continuously shrunk to a point)



Delaunay Triangulations
Given a finite point cloud V in ℝn, 

The Delaunay triangulation of V is a classic notion in Computational Geometry: 

✦ Producing a “nice” triangulation of V 
✤ free of long and skinny triangles  

✦ Named after Boris Delaunay for his work on this topic from 1934  

✦ Originally defined for sets of points in ℝ2 but generalizable to arbitrary dimensions

Images from [De Floriani 2003]



Delaunay Triangulations
Definitions:

Given a finite point cloud V in ℝ2, 

✦ The convex hull of V is the smallest convex subset 
CH(V) of ℝ2 containing all the points of V 

✦ A triangulation of V is A 2-dimensional simplicial 
complex K such that: 

✤ The domain of K is CH(V) 
✤ The 0-simplices of K are the points in V

Images from [De Floriani 2003]



Delaunay Triangulations
Definition:

A Delaunay triangulation is a triangulation Del(V) of V such that:  

the circumcircle of any triangle does not contain any point of V in its interior

Images from [De Floriani 2003]



Delaunay Triangulations
Definition:

A finite set of points V in ℝn is in general position if no n + 2 of the points lie on a 
common (n − 1)-sphere 

E.g. , for n = 2, 
V in general 

position
No four or more points 

are co-circular

Images from [De Floriani 2003]

If V is in general position, then Del(V) is unique
Theorem:

if and only if



The Voronoi region of u in V is the set of points of ℝ2 for which u is the closest 

✦ Any Voronoi region is a convex closed subset of ℝ2 

✦ A Voronoi region is not necessarily bounded 

Delaunay Triangulations
Definitions:

Images from [De Floriani 2003]

u

The Voronoi diagram is the collection Vor(V)  

of the Voronoi regions of the points of V

RV (u) := {x 2 R2 | 8v 2 V, d(x, u)  d(x, v)}

<latexit sha1_base64="02GRyknRZOp4C0zvcMXF8YJBjFE="></latexit>



Delaunay Triangulations

Images from [De Floriani 2003]

If V is in general position, then  
the Delaunay triangulation coincides with the nerve of the Voronoi diagram

Duality Property:

Del(V ) = {� ✓ V |
\

u2�

RV (u) 6= ;}

u

v

et
✦ Each point u of V corresponds to a Voronoi region RV(u) 

✦ Each triangle t of Del(V) correspond to a vertex in Vor(V) 

✦ Each edge e=(u,v) in Del(V) corresponds to an edge  
shared by the two Voronoi regions RV(u) and RV(v)



Delaunay Triangulations

Algorithms:

✦ Two-step algorithms: 
✤ Computation of an arbitrary triangulation K’  
✤ Optimization of K’ to produce a Delaunay triangulation 

✦ Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]:  
✤ Modification of an existing Delaunay triangulation while adding a new vertex at a time 

✦ Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]: 
✤ Recursive partition of the point set into two halves  
✤ Merging of the computed partial solutions  

✦ Sweep-line algorithms [Fortune 1989]:  
✤ Step-wise construction of a Delaunay triangulation while moving a sweep-line in the plane 



Delaunay Triangulations

Watson’s Algorithm:

A Delaunay triangulation is computed by incrementally adding  

a single point to an existing Delaunay triangulation

Images from [De Floriani 2003]

Let Vi be a subset of V and let u be a point in V \ Vi ,

Input:  
Del(Vi), a Delaunay triangulation of Vi

Output:  
Del(Vi+1), a Delaunay triangulation of Vi+1 := Vi ∪ {u} 

u



Given a Delaunay triangulation Del(Vi) of Vi and a point u in V \ Vi , 

✦ The influence region Ru of a point u is the region  
in the plane formed by the union of the triangles  
in Del(Vi) whose circumcircle contains u in its interior 

✦ The influence polygon Pu of u is the polygon  
formed by the edges of the triangles of Del(Vi)  
which bound Ru 

Delaunay Triangulations

Watson’s Algorithm:

Images from [De Floriani 2003]

u



Delaunay Triangulations

Watson’s Algorithm:

Images from [De Floriani 2003]

✦ Step 1:  
Deletion of the triangles of Del(Vi) forming the influence region Ru

✦ Step 2:  
Re-triangulation of Ru by joining u to the vertices of the influence polygon Pu

u u



Delaunay Triangulations

Watson’s Algorithm:

Let Ni =|Vi|  

✦ Detection of a triangle of Del(Vi) containing the new point u: O(Ni) in the worst case  

✦ Detection of the triangles forming the region of influence through a breadth-first 
search: O(|Ru|)  

✦ Re-triangulation of Pu is in O(|Pu|) 

✦ Inserting a point u in a triangulation with Ni vertices: O(Ni) in the worst case 

✦ Inserting all points of V: O(N2) in the worst case, where N =|V|



Čech Complexes
Definition:

Given a finite set of points V in ℝn, let us consider:



Čech Complexes
Definition:

Given a finite set of points V in ℝn, let us consider:

✦ Bu(r), the closed ball with center u ∈ V and radius r
✦ S, the collection of these balls

r
u Bu(r)



Čech Complexes
Definition:

Given a finite set of points V in ℝn, let us consider:

The Čech complex Čech(r) of V 
of radius r is the nerve of S

Čech(r) := {� ✓ V |
\

u2�

Bu(r) 6= ;}

✦ Bu(r), the closed ball with center u ∈ V and radius r
✦ S, the collection of these balls

r
u Bu(r)



Čech Complexes
Definition:

Given a finite set of points V in ℝn, let us consider:

The Čech complex Čech(r) of V 
of radius r is the nerve of S

Čech(r) := {� ✓ V |
\

u2�

Bu(r) 6= ;}

✦ Bu(r), the closed ball with center u ∈ V and radius r
✦ S, the collection of these balls

r
u Bu(r)



Čech Complexes
Definition:

Given a finite set of points V in ℝn, let us consider:

         In practice, infeasible construction 

The Čech complex Čech(r) of V 
of radius r is the nerve of S

Čech(r) := {� ✓ V |
\

u2�

Bu(r) 6= ;}

✦ Bu(r), the closed ball with center u ∈ V and radius r
✦ S, the collection of these balls

r
u Bu(r)



Vietoris-Rips Complexes
Definition:

Given a finite set of points V in ℝn,

The Vietoris-Rips complex VR(r) of V and r is the 
abstract simplicial complex consisting of all 

subsets of diameter at most 2r 

r
u Bu(r)

V R(r) := {� ✓ V | d(u, v)  2r, 8u, v 2 �}

Formally,



Vietoris-Rips Complexes
Properties:

✦ Čech(r) ✓ V R(r) ✓ Čech(
p
2r)

√2 rrr

⊆ ⊆

Čech(r) Čech(
p
2r)V R(r)



Vietoris-Rips Complexes
Properties:

✦      
✦ VR(r) is completely determined by its 1-skeleton 

✤ I.e. the graph G of its vertices and its edges

Čech(r) ✓ V R(r) ✓ Čech(
p
2r)

G VR(r)



Vietoris-Rips Complexes
Algorithms:

✦ Step 1 - Skeleton Computation: 
✤ Exact ( O(|V|2) time complexity ) 
✤ Approximate 
✤ Randomized 
✤ Landmarking

✦ Step 2 - Vietoris-Rips Expansion:
✤ Inductive 
✤ Incremental 
✤ Maximal 

Input:      A finite set of points V in ℝn and a real positive number r 
Output:   The Vietoris-Rips complex VR(r)

A two-step approach is typically adopted:

Step 1



Vietoris-Rips Complexes
Algorithms:

✦ Step 1 - Skeleton Computation: 
✤ Exact ( O(|V|2) time complexity ) 
✤ Approximate 
✤ Randomized 
✤ Landmarking

✦ Step 2 - Vietoris-Rips Expansion:
✤ Inductive 
✤ Incremental 
✤ Maximal 

Input:      A finite set of points V in ℝn and a real positive number r 
Output:   The Vietoris-Rips complex VR(r)

A two-step approach is typically adopted:

Step 2



Vietoris-Rips Complexes
Inductive VR expansion:

Input:      The 1-skeleton G = (V, E) of VR(r) 
Output:   The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) 
K = V ∪ E 
for i = 1 to k 

foreach i-simplex 𝜎 ∈ K 
N = ∩u ∈ 𝜎 LOWER-NBRS(G, u) 

foreach v ∈ N 
K = K ∪ { 𝜎 ∪ {v}} 

return K 
LOWER-NBRS(G, u) 

return {v ∈ V | v < u , (u, v) ∈ E}

1

2

3

4



Vietoris-Rips Complexes
Inductive VR expansion:

Input:      The 1-skeleton G = (V, E) of VR(r) 
Output:   The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) 
K = V ∪ E 
for i = 1 to k 

foreach i-simplex 𝜎 ∈ K 
N = ∩u ∈ 𝜎 LOWER-NBRS(G, u) 

foreach v ∈ N 
K = K ∪ { 𝜎 ∪ {v}} 

return K 
LOWER-NBRS(G, u) 

return {v ∈ V | v < u , (u, v) ∈ E}

𝜎 = (1, 2)

N = { }
1

2

3

4



Vietoris-Rips Complexes
Inductive VR expansion:

Input:      The 1-skeleton G = (V, E) of VR(r) 
Output:   The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) 
K = V ∪ E 
for i = 1 to k 

foreach i-simplex 𝜎 ∈ K 
N = ∩u ∈ 𝜎 LOWER-NBRS(G, u) 

foreach v ∈ N 
K = K ∪ { 𝜎 ∪ {v}} 

return K 
LOWER-NBRS(G, u) 

return {v ∈ V | v < u , (u, v) ∈ E}

𝜎 = (2, 3)

N = {1}
1

2

3

4



Vietoris-Rips Complexes
Inductive VR expansion:

Input:      The 1-skeleton G = (V, E) of VR(r) 
Output:   The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) 
K = V ∪ E 
for i = 1 to k 

foreach i-simplex 𝜎 ∈ K 
N = ∩u ∈ 𝜎 LOWER-NBRS(G, u) 

foreach v ∈ N 
K = K ∪ { 𝜎 ∪ {v}} 

return K 
LOWER-NBRS(G, u) 

return {v ∈ V | v < u , (u, v) ∈ E}

1

2

3

4



Vietoris-Rips Complexes
Inductive VR expansion:

Input:      The 1-skeleton G = (V, E) of VR(r) 
Output:   The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) 
K = V ∪ E 
for i = 1 to k 

foreach i-simplex 𝜎 ∈ K 
N = ∩u ∈ 𝜎 LOWER-NBRS(G, u) 

foreach v ∈ N 
K = K ∪ { 𝜎 ∪ {v}} 

return K 
LOWER-NBRS(G, u) 

return {v ∈ V | v < u , (u, v) ∈ E}

𝜎 = (3, 4)

N = {1}
1

2

3

4



Vietoris-Rips Complexes
Inductive VR expansion:

Input:      The 1-skeleton G = (V, E) of VR(r) 
Output:   The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) 
K = V ∪ E 
for i = 1 to k 

foreach i-simplex 𝜎 ∈ K 
N = ∩u ∈ 𝜎 LOWER-NBRS(G, u) 

foreach v ∈ N 
K = K ∪ { 𝜎 ∪ {v}} 

return K 
LOWER-NBRS(G, u) 

return {v ∈ V | v < u , (u, v) ∈ E}

1

2

3

4



From Data to Complexes

Delaunay triangula?on

Čech / VR complex

Bounded  
Dimension

Trivial  
Homology

“Real”  
Homology

High Dimension 
Large Size



Alpha-Shapes
Definition:Definition:

Given a finite set of points V in general position of ℝn, let us consider:
✦ Au(r) := Bu(r) ∩ RV(u), the intersection of the closed ball with 

center u ∈ V and radius r and the Voronoi region of u 
✦ S, the collection of these convex sets 

The alpha-shape Alpha(r) of V of radius r is the nerve of S 

Formally,
Alpha(r) := {� ✓ V |

\

u2�

Au(r) 6= ;}

Alpha(r) ✓ Čech(r)Au(r) ✓ Bu(r) Image from [Edelsbrunner, Harer 2010]



Witness Complexes

Motivation:

The “shape” of a point cloud can be captured without considering all the input points

Images from [de Silva, Carlsson 2004]

Definitions:

✦ Landmarks:  

Selected points 

✦ Witnesses:  

Remaining points



Witness Complexes
Definition:

The witness complex W(r) of radius r is defined by: 

✦ u is in W(r) if u is a landmark 

✦ (u, v) is in W(r) if there exists a witness w such that 

  

where mw : = the distance of w from the 2nd closest landmark 

✦ the i-simplex 𝜎 is in W(r) if all its edges belong to W(r)

u

v

w

W0(r) ✓ V R(r) ✓ W0(2r)

max{d(u,w), d(v, w)}  mw + r

W0(r) is defined by setting mw = 0 for any witness w



From Data to Complexes

Most of the presented constructions can be generalized / adapted to the case of  

a finite collection of elements endowed with a notion of proximity*  

enabling to cover a wide plethora of datasets 

*More properly, a semi-metric, i.e. a distance not necessarily satisfying the triangle inequality

Not Only Point Clouds in ℝn 



From Data to Complexes
Not Only Point Clouds in ℝn 

✦ Point Clouds: 
✤ Delaunay triangulation  
✤ Čech complexes 
✤ Vietoris-Rips complexes 
✤ Alpha-shapes 
✤ Witness complexes complexes 

✦ Graphs and Complex Networks:  
✤ Flag complexes 

✦ Functions: 
✤ Sublevel sets



From Data to Complexes

Let G := (V, E, w: E → ℝ) be a weighted undirected graph representing a network:

Flag Complex of a Weighted Network:

8
><

>:

8
><

>:

Nodes of V

Arcs of E

Weights of w

Entities or individuals

Ties between entities

Proximity of entities*
1

1

1

1

1

1

1
1

1

2

2 2

2

3

3

32

*If w represents tie strengths rather than node proximity, consider as weight “1/w”

Fixed a weight threshold 𝜀, the flag (or the clique) 
complex is the VR expansion of the graph G𝜀 := (V, E𝜀) 

where E𝜀 are the arcs of E with weight ≤ 𝜀



From Data to Complexes
Flag Complex of a Weighted Network:

1

1

1

1

1

1

1
1

1

2

2 2

2

3

3

32

1



From Data to Complexes
Flag Complex of a Weighted Network:

1

1

1

1

1

1

1
1

1 1

𝜀 = 1



From Data to Complexes
Flag Complex of a Weighted Network:

2 2

2

2

1

1

1

1

1

1

1
1

1 1

𝜀 = 2



From Data to Complexes
Flag Complex of a Weighted Network:

2 2

2

2

3

1

1

1

1

1

1

1
1

1 1

1

3

3

1

1

𝜀 = 3



From Data to Complexes

Given a function  f: D → ℝ ,

Sublevel Sets of Functions

✦ Step 1:  
Transform f: D → ℝ into a function F: K→ ℝ defined on a simplicial complex K 

E.g. if D is a point cloud, construct from it a simplicial complex K and define F as 

✦ Step 2:  
Build the collection { Kr }r∈ℝ of the sublevel sets of F defined as 

Notice that Kr is a simplicial complex whenever: if 𝝉 is a face of 𝝈 then F(𝝉) ≤ F(𝝈)



From Data to Complexes
Sublevel Sets of Functions

Given a function F: K → ℝ ,

F

r1



From Data to Complexes
Sublevel Sets of Functions

F

r2

Given a function F: K → ℝ ,



From Data to Complexes
Sublevel Sets of Functions

F

r3 Given a function F: K → ℝ ,
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In PracUce? In Theory?
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Persistent Homology
✦ Do they have the same shape?



Persistent Homology

In PracUce? In Theory?

✦ Do they have the same shape?



Persistent Homology

In PracUce? In Theory?

They are not homeomorphic

✦ Do they have the same shape?



Persistent Homology

This leads to consider

✦ Which is the shape of a given data?

Point Cloud Dataset Topological Nature of 
the “Underlying” Shape

Persistent homology allows for the retrieval of the “actual” homological informakon of a data

Image from [Bauer 2015]



Persistent Homology

This leads to consider

✦ Which is the shape of a given data?

Noisy Dataset Relevant Homological 
Informa?on

Image from [Dey et al. 2008]

Persistent homology allows for the retrieval of the “actual” homological informakon of a data



K 
0

K 
1

K 
2

K 
3

K 
4

K 
5

K 
6

Persistent Homology
In a Nutshell:

Image from [Ghrist 2008]

Persistent homology allows for  
describing the changes in the shape of an evolving object



Persistent Homology

This leads to consider

Actually, this coincides with persistent homology in degree 0

Size Func?ons: 

✦ Es?ma?on of natural pseudo-distance 
between shapes endowed with a funckon f 

✦ Tracking of the connected components of a 
shape along its evolukon induced by f

An Evolving Notion:

Frosini

1990

Image from [Frosini 1992]



Persistent Homology

This leads to consider

✦ Introduckon of the nokon of 
filtra?on  

✦ De facto computakon of 
persistence pairs

Incremental Algorithm for Bew Numbers: 

Frosini

1990

Delfinado, 
Edelsbrunner

1994

Image from [Delfinado, Edelsbrunner 1995]

An Evolving Notion:



Persistent Homology

Homology from Finite Approxima?ons: 

✦ Extrapola?on of the homology of a metric 
space from a finite point-set approxima?on 

✦ Introduckon of persistent Bew numbers 

Frosini Delfinado, 
Edelsbrunner Robins

199919941990

Image from [Robins 1999]

An Evolving Notion:



Persistent Homology

This leads to consider
Frosini Delfinado, 

Edelsbrunner Robins

2002

Edelsbrunner, 
Letscher, 

Zomorodian

Topological Persistence: 

✦ Introduckon and algebraic formulakon of the 
nokon of persistent homology 

✦ Descrip?on of an algorithm for compukng 
persistent homology

199919941990

Image from [Edelsbrunner et al. 2002]

An Evolving Notion:



Persistent Homology

Formally, a filtration 𝓕 of a simplicial complex K is a collection of subcomplexes { Kp 

}p ∈ ℝ  of K for which, given any p, q ∈ ℝ such that p ≤ q,  

Kp ⊆ Kq    

Intuitively, a filtration 𝓕 is a finite “growing’’ sequence of simplicial complexes 

K 
0 K 

2 K 
3K 

1 K 
4

Definition:



Persistent Homology

Working Assumption:

We can always pretend that parameter p varies over ℕ

Most of the techniques transforming a dataset into a simplicial complex                
depending on the choice of a parameter actually produce a filtra?on { Kp }p ∈ ℝ 

K 
0 K 

2 K 
3K 

1 K 
4



Persistent Homology

Given a filtration 𝓕 := { Kp }p ∈ ℕ , a value i ∈ ℕ, and a field 𝔽, the ith persistence 
module M of 𝓕 over 𝔽 is defined as the finitely generated graded 𝔽[x]-module 

where: 

✦ Mp := Hi (Kp; 𝔽) , the set of homogeneous elements of grade p 

✦ The action xq-p h over an element h of grade p is defined as 𝝁i p,q(h), where:  

✤ 𝝁i p,q(h): Hi (Kp; 𝔽) ⟶ Hi (Kq; 𝔽) is the linear map induced by the inclusion Kp ⊆ 

Kq    

Definition:

<latexit sha1_base64="8v+sU74fvcROSuxt1B8cSASi7F0=">AAACGHicbVC7SgNBFJ2NrxhfUUubwShYhV0RFUEI2thEIpgHZMMyO7mJQ2Z3h5m7QljyA36CX2GrlZ3Y2ln4L+7GFJp4qsM593LPPb6SwqBtf1q5ufmFxaX8cmFldW19o7i51TBRrDnUeSQj3fKZASlCqKNACS2lgQW+hKY/uMz85j1oI6LwFocKOgHrh6InOMNU8op7VXp2Tl1f9CMlY+MliroipG7A8M73k+vRqOopr1iyy/YYdJY4E1IiE9S84pfbjXgcQIhcMmPajq2wkzCNgksYFdzYgGJ8wPrQTmnIAjCdZPzNiO7HhmFEFWgqJB2L8HsjYYExw8BPJ7OUZtrLxP+8doy9004iQhUjhDw7hELC+JDhWqQ1Ae0KDYgsSw40LYIzzRBBC8o4T8U47a2Q9uFMfz9LGodl57js3ByVKheTZvJkh+ySA+KQE1IhV6RG6oSTB/JEnsmL9Wi9Wm/W+89ozprsbJM/sD6+Aboln8k=</latexit>

M :=
M

p2N
Mp



Persistent Homology

So, M is completely determined by the collection of values rk and of pairs (pj, qj)  

Such descriptors are typically expressed as pairs, called persistence pairs of M, of 

 the kind (rk , ∞) and (pj, qj)

Any persistence module M can be expressed as

Theorem (structure for finitely generated graded modules over a PID):

<latexit sha1_base64="yt+LLidtk6atVmB1aEz5jPGetlw="></latexit>

M ⇠=
nM

k=1

F[x](�rk)�
mM

j=1

⇣
F[x]/(xqj�pj )

⌘
(�pj)



Persistent Homology
Intuitively:

Given a filtration 𝓕 := { Kp }p ∈ ℕ , a persistence pair (p,q) ∈ ℕ ⨯(ℕ ∪ {∞}) with p < q 
represents a homological class that is born at step p and dies at step q

⊆

K0 K1 K2 K3

⊆ ⊆
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Persistent Homology
Intuitively:

Given a filtration 𝓕 := { Kp }p ∈ ℕ , a persistence pair (p,q) ∈ ℕ ⨯(ℕ ∪ {∞}) with p < q 
represents a homological class that is born at step p and dies at step q

⊆

K0 K1 K2 K3

⊆ ⊆

(2, ∞) essen?al pair



This leads to consider

Differently from homology, persistent homology provides  
a no?on of “shape” closer to our everyday percep?on

It is possible to compare two shapes by comparing their homology groups 

Persistent Homology



This leads to consider

Differently from homology, persistent homology provides  
a no?on of “shape” closer to our everyday percep?on

It is possible to compare two shapes by comparing their homology groups 
PERSISTENCE PAIRS

Persistent Homology



This leads to consider

Differently from homology, persistent homology provides  
a no?on of “shape” closer to our everyday percep?on

It is possible to compare two shapes by comparing their homology groups 
PERSISTENCE PAIRS

In order to better perform the above task, we need: 

✦ Visual and descriptive representations for persistence pairs 

✦ Notions of distance between sets of persistence pairs and stability results

Persistent Homology
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Visualizing Persistence



Goal:

We address two main questions: 

✦ Can this topological information be characterized in a simpler and “more 
visualizable” way? 

✦ Is this information stable under small perturbations of the input data?

(Persistent) Homology allows for assigning to any (filtered) simplicial complex 
topological information expressed in terms of algebraic structures

Shape Features

Persistent Homology



Visualizing Persistence
Given a filtration 𝓕, 

Persistent pairs of 𝓕 can be visualized through: 
✦ Barcodes [Carlsson et al. 2005; Ghrist 2008] 
✦ Persistence diagrams [Edelsbrunner, Harer 2008] 
✦ Persistence landscapes [Bubenik 2015] 
✦ Corner points and lines [Frosini, Landi 2001] 
✦ Half-open intervals [Edelsbrunner et al. 2002] 
✦ k-triangles [Edelsbrunner et al. 2002]

⊆⊆ ⊆



Visualizing Persistence

This leads to consider
⊆

K0 K1 K2 K3

⊆ ⊆

H0

H1

0 1 2 3 ∞

Persistence pairs are represented as intervals in ℝBarcodes:



Visualizing Persistence
Persistence Diagrams:

0

1

2

3

∞

1 2 3 ∞
birth

de
at

h

H0 H1 (2, ∞)
(2, 3)

(0, ∞)
(0, 1)

Persistence pairs are represented as points in ℝ2



Visualizing Persistence
Persistence pairs are represented as points in ℝ × (ℝ ∪ {∞})Persistence Diagrams:

0

1

2

3

∞

1 2 3 ∞
birth

de
at

h

H0 H1 (2, ∞)
(2, 3)

(0, ∞)
(0, 1)

Formally, a persistence diagram is a mul?set 

✦ Points are endowed with mulUplicity



Visualizing Persistence

This leads to consider

3 ∞210

3 ∞210

3

∞

2

1

Both tools visually represent the  
lifespan of the homology classes:

✦ Barcode: length of the intervals 

✦ Persistence Diagram: distance from the diagonal  

Barcodes and Persistence Diagrams 
encode equivalent informa?on



Visualizing Persistence

A visualizakon can be easily 
“translated” into the other one:

Barcodes and Persistence Diagrams encode equivalent informa?on

3 ∞210

3

∞

2

1

[p, ∞)

[p, q]

(p, ∞)

(p, q)



Visualizing Persistence
Persistence Landscapes:

Given a persistence module M, persistence landscapes 

✦ Consist of a collection of 1-Lipschitz functions 

✦ Lie in a vector space 

✦ Are stable (under small perturbations of the input filtration)

Persistence landscapes are statistics-friendly 
representations of persistence pairs

Image from [Bubenik 2015]



Visualizing Persistence
Persistence Landscapes: Given a persistence module M,

Formally, Images from [Bubenik 2015]

�i(x) := sup{m � 0 |�x�m,x+m � i}

<latexit sha1_base64="v2LC2HnwlSEoZW6SGwFEtdSxAhM=">AAACMnicbVBdaxNBFJ2NXzW1urWPvgyGQqRt2JVAq6AEffExgmkLmTTcndzEITO725m7krLm3/Qn+Ct8tS8VfCh97Y/oJM1Dm3pg4HDOudy5J8m1chRF50HlwcNHj5+sPK2uPlt7/iJcf7nvssJK7MhMZ/YwAYdapdghRRoPc4tgEo0HyfjzzD/4gdapLP1GJzn2DIxSNVQSyEv98KPQPjyAvqpP3rz/IFyRi5IbLkZ4zCMutn/6x0WCBEflZMds88mWmd7YSkz7YS1qRHPw+yRekBpboN0P/4lBJguDKUkNznXjKKdeCZaU1DitisJhDnIMI+x6moJB1yvnd075ZuGAMp6j5UrzuYi3J0owzp2YxCcN0He37M3E/3ndgoZ7vVKleUGYytkiUhrni5y0yheIfKAsEsHs58hVyiVYIEKrOEjpxcI3WvV9xMvX3yf7bxtxs/Hua7PW+rRoZoW9Yq9ZncVsl7XYF9ZmHSbZKfvN/rCz4FfwN7gILm+ilWAxs8HuILi6BtmjqFE=</latexit>

where
<latexit sha1_base64="9ILef60XwsDw7NMLhwlTBD9r+oQ="></latexit>

�p,q := dim(Im(µp,q : Mp ! Mq))



Visualizing Persistence
Persistence Landscapes:

Mean of persistence landscapes is well-defined

                                Mean of persistence diagrams is not unique, but …

Images from [Bubenik 2015]



Bibliography

Some References:

✦ Persistent Homology: 
✤ U. Fugacci, S. Scaramuccia, F. Iuricich, L. De Floriani. Persistent homology: a step-by-step 

introducAon for newcomers. Eurographics Italian Chapter Conference, pages 1-10, 2016.



Persistence & Stability



Stability of Persistence

*The term “distance” is intended in a broad sense, including pseudo-metrics and dissimilarity measures

In order to be adopted in real applicative domains, it is crucial that  

persistent homology is not affected by noisy data and small perturbations 

By defining distances* for both domains,

Stability Result:

Similar  
Persistent Homology

Similar Data



Stability of Persistence
Distances:

✦ For the Data in Input: 
✤ Natural pseudo-distance of shapes 

✤ L∞-distance of filtering functions 

✤ Gromov-Hausdorff distance of metric spaces/point clouds 

✦ For the Retrieved Persistent Homology Information: 
✤ Interleaving distance of persistence modules 

✤ Bottleneck (a.k.a. Matching) distance of persistence diagrams 

✤ Hausdorff distance of persistence diagrams 

✤ Wasserstein distances of persistence diagrams



Stability of Persistence
Distances for Input Data:

Let (X, f) be a pair such that: 
✦ X is a (triangulable) topological space 

✦ f: X → ℝ is a continuous function 

A pair (X, f) induces a filtration: 

✦ X t := f-1( (-∞, t] ) 

Definition:
The function f is called tame if: 

✦ f has a finite number of homological critical values (i.e. the “time” steps in which 
homology changes) 

✦ For any k ∈ ℕ and t ∈ ℝ, the homology group Hk(X t, 𝔽) has finite dimension

Image from [Ferri et al. 2015]



Stability of Persistence
Distances for Input Data:

Definition:

Given two pairs (X, f) and (Y, g), their natural pseudo-distance dN is defined as: 

where H(X, Y) is the set of all the homeomorphisms between X and Y 

dN

⇣
(X, f), (Y, g)

⌘
:=

(
infh2H(X,Y ){maxx2X{|f(x)� g � h(x)|}}
+1 if H(X,Y ) = ;

<latexit sha1_base64="gqlaYadCU5o/MMzLtyrjypBcbZU="></latexit>



Stability of Persistence
Distances for Input Data:

Working with two functions f, g: X → ℝ  defined on the same topological space X,  

one can simply consider the L∞-distance between f and g

f
g

kf � gk1 := sup
x2X

{|f(x)� g(x)|}

<latexit sha1_base64="X1y2FMOl0CxVkoz15UE96IAGTTU="></latexit>

Image from [Rieck 2016]



Stability of Persistence
Distances for Input Data:

Definitions:

A correspondence C: X ⇉ Y from X to Y is a subset of X × Y such that  

the canonical projections 𝜋X: C → X and 𝜋Y: C → Y are both surjective 

The distortion dis(C) of a correspondence C: X ⇉ Y is defined as: 

The Gromov-Hausdorff distance dGH between (X, dX) and (Y, dY) is defined as: 

dGH(X,Y ) :=
1

2
inf{dis(C) |C : X ◆ Y is a correspondence}

<latexit sha1_base64="2Xc+H9WfmvlL8Yf+kHsSxrKHiK0="></latexit>

Given two finite metric spaces (X, dX), (Y, dY) (e.g. two finite point clouds in ℝn),

dis(C) := sup
�
|dX(x, x0)� dY (y, y

0)| : (x, y), (x0, y0) 2 C
 

<latexit sha1_base64="yoOZmPaHv43BM/kktzG0IIVT3sU="></latexit>



Stability of Persistence
Distances for Persistent Homology Information:

Two persistence modules M and N are called ε-interleaved with ε ≥ 0 if there exist         
f and g such that, for any p, q ∈ ℝ with p ≤ q, the following diagrams commute

Definition:

Given two persistence modules M and N, their interleaving distance dI is defined as:

dI(M,N) := inf{" � 0 |M and N are "-interleaved}

<latexit sha1_base64="JDe7nvRKuUh01cSwrQJvEl9+sho="></latexit>



Stability of Persistence
Distances for Persistent Homology Information:

Definitions:
Given two persistence diagrams D1 and D2,  

their bottleneck distance dB and Hausdorff distance dH are defined as:  

where 𝜸 ranges over all bijections from D1 to D2 

dB(D1, D2) := inf
�

n
sup
x2D1

{kx� �(x)k1}
o
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dH(D1, D2) := max
n

sup
x2D1

�
inf

y2D2

{kx� yk1}
 
, sup
y2D2

�
inf

x2D1

{ky � xk1}
 o
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Im
ag

e 
fr

om
 [R

ie
ck

 2
01

6]



Stability of Persistence
Distances for Persistent Homology Information:

Definitions:
Given two persistence diagrams D1 and D2,  

their bottleneck distance dB and Hausdorff distance dH are defined as:  

where 𝜸 ranges over all bijections from D1 to D2 

dB(D1, D2) := inf
�

n
sup
x2D1

{kx� �(x)k1}
o

<latexit sha1_base64="BGZWPA6eOR4RDFKTm1Yj6tJTAWI=">AAACS3icbVBNaxNBGJ6NVmv8aNSjl8EgpKBhtxTUQqHEHjxWME0hE4Z3J2/i0JndZeZdSdjuT+tP6A/w4MmrnryJB2eTHLT1OT08H7wzT1oY7SmOv0StW7e37tzdvte+/+Dho53O4yenPi+dwqHKTe7OUvBodIZD0mTwrHAINjU4Ss/fNf7oMzqv8+wjLQucWJhneqYVUJBkZzSVg96xTF7yY7m3yw8OudDZTIo5WAtcDPRcVFz4spDVIjghldS8kS4Wr9ah3mJXXMimRUsu6nWnlp1u3I9X4DdJsiFdtsGJ7HwV01yVFjNSBrwfJ3FBkwocaWWwbovSYwHqHOY4DjQDi35SrQao+YvSA+W8QMe14SsR/25UYL1f2jQkLdAnf91rxP9545JmbyaVzoqSMFPNIdIGV4e8cjosi3yqHRJB83LkYSIFDojQaQ5KBbEMU7fDHsn1398kp3v9ZL//9sN+92iwWWabPWPPWY8l7DU7Yu/ZCRsyxS7ZN/ad/Yiuop/Rr+j3OtqKNp2n7B+0tv4AT56xBA==</latexit>

dH(D1, D2) := max
n

sup
x2D1

�
inf

y2D2

{kx� yk1}
 
, sup
y2D2

�
inf

x2D1

{ky � xk1}
 o
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Stability of Persistence
Stability Results:

Given two pairs (X, f), (Y, g) of topological spaces and tame functions and k ∈ ℕ, let M, N be the 
induced kth persistence modules and let D1, D2 be the corresponding persistence diagrams 

✦   

✦  dI(M,N) = dB(D1, D2)

<latexit sha1_base64="YqVyOIPC+2jGyCiZeEjhZam4B80=">AAACDXicbVBNSwJRFH3Tp9nXVKto80gCBZEZEapFIOaiFoVBfoDK8OZ5tYdvPnjvTiAi/YR+RdtatYu2/YYW/ZdGc1HaWR3OuZd7z3FDKTRa1qexsLi0vLKaWEuub2xubZs7uzUdRIpDlQcyUA2XaZDChyoKlNAIFTDPlVB3++djv34PSovAv8VBCG2P9XzRFZxhLDnmfse5TF9l6XWGntGOU0qXHTtLy04+45gpK2dNQOeJPSUpMkXFMb9anYBHHvjIJdO6aVshtodMoeASRslWpCFkvM960IypzzzQ7eEkwogeRZphQENQVEg6EeH3xpB5Wg88N570GN7pWW8s/uc1I+yetIfCDyMEn48PoZAwOaS5EnE3QDtCASIbfw5U+JQzxRBBCco4j8UoLisZ92HPpp8ntXzOLuRObwqpYmnaTIIckEOSJjY5JkVyQSqkSjh5IE/kmbwYj8ar8Wa8/4wuGNOdPfIHxsc3evOYQg==</latexit>

dH(D1, D2)  dB(D1, D2)
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Theorem:

Under the above hypothesis, the following optimal lower bound holds

dI(M,N)  dN
⇣
(X, f), (Y, g)

⌘

<latexit sha1_base64="LRpASUHtZTDibalvLUx84SvEPGY="></latexit>



Stability of Persistence
Stability Results:

Images from [Rieck 2016]

Theorem:

Given two tame continuous functions f, g: X → ℝ   

on a topological space X, k ∈ ℕ, and Df, Dg the induced kth persistence diagrams,

dB(Df , Dg)  kf � gk1
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Stability of Persistence
Stability Results:

Theorem:

Given two finite metric spaces (X, dX), (Y, dY), k ∈ ℕ, and DX, DY the kth persistence  

diagrams of the filtrations of the Vietoris-Rips complexes generated by X and Y,

dB(DX , DY )  dGH(X,Y )
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Computing Persistence



Goal:

✦ How to efficiently compute (persistent) homology? 

✦ How to compactly encode simplicial complexes of high dimension and large size? 

Topological Data Analysis allows for assigning to (almost) any dataset a collection of 
features representing a topological summary of the input data

FeaturesShape

Persistent Homology Computation



Persistent Homology Computation
Standard Algorithm:

From: To:

[1, ∞)

[3, ∞)[1, ∞)

[1, 2]

H0 H1

1

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

2

3

[Zomorodian & Carlsson 2005]

Compute a reduced boundary matrix for { Kp }p from which easily read the persistence pairs



Persistent Homology Computation

Total Ordering on { Kp }p:

A sequence σ1, σ2, … , σn of the simplices of K such that:  

✦ if f(σi) < f(σj), then i < j 
✦ if σi is a proper face of σj, then i < j

1

2

3
f

Given a filtered simplicial complex, let us consider its filtering func?on f: 

f(σ) := min { p | σ ∈ K p }

Conversely,   K p := { σ ∈ K| f(σ) ≤ p } 



Persistent Homology Computation

A Possible Choice:

Set σ < σ’ if:  
✦  f(σ) < f(σ’) 
✦  f(σ) = f(σ’) and dim(σ) < dim(σ’) 
✦  f(σ) = f(σ’), dim(σ) = dim(σ’), and σ precedes σ’ w.r.t. the lexicographic order of their vervces

1

2

3
f

1 2 3

4 5 6 7

13 14 15 16

8

11

9 10

12

20 2117 18 19

22

23

Given a filtered simplicial complex, let us consider its filtering func?on f: 

f(σ) := min { p | σ ∈ K p }

Conversely,   K p := { σ ∈ K| f(σ) ≤ p } 



 A square matrix D of size n x n defined by 

Boundary Matrix:

13 14

4

18
E.g. 

✦ D4,18 = 1 

✦ D14,18 = 1 

✦ D13,18 = 0 

Persistent Homology Computation

<latexit sha1_base64="PU9xt+WIHMWNEPp64QPP8+o7Vn0="></latexit>

Di,j :=

(
1 if �i is a face of �j s.t. dim(�i) = dim(�j)� 1

0 otherwise



Persistent Homology Computation

 Given a non-null column j of a boundary matrix D,  

low(j) := max { i | Di,j ≠ 0 } 

 Equivalently, if low function is injective on its domain of definition

Reduced Matrix:

A matrix R is called reduced if, for each pair of non-null columns j1, j2, 

low(j1) ≠ low(j2)



Persistent Homology Computation
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

D is not reducedlow(10) = 7 = low(12)



Persistent Homology Computation

Matrix R = D 
for j = 1, …, n do  

while ∃ j’ʹ < j with low(j’) = low(j) do  

R.column(j) = R.column(j) + R.column(j’) 

endwhile

endfor 

return R

Reduction Algorithm:

At most n2 column addivons O(n3) in the worst case

Time Complexity:



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

Inikalize R to D, where 
D is the boundary matrix of K  

expressed according with a total ordering of its simplices



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

j < 12

For each j < 12, 
there is no j’ < j such that 

low(j’) = low(j) 
So, increase j by 1



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

jj’

For j = 12, low(12) = 7 
column j’=10 is such that low(j’) = low(j) = 7 

So, set  
column 12 := column 12 + column 10  



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 6 13 14 14 15 16 14 22

For j = 12, low(12) = 7 
column j’=10 is such that low(j’) = low(j) = 7 

So, set  
column 12 := column 12 + column 10            low(12) = 6

j



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 6 13 14 14 15 16 14 22

jj’

For j = 12, low(12) = 6 
column j’ = 9 is such that low(j’) = low(j) = 6 

So, set  
column 12 := column 12 + column 9          



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

For j = 12, low(12) = 6 
column j’ = 9 is such that low(j’) = low(j) = 6 

So, set  
column 12 := column 12 + column 9                 low(12) = 3

j



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

j

For each j = 12, 
there is no j’ < j such that 

low(j’) = low(j) = 3 
So, increase j by 1



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

12 < j < 19

For each 12 < j < 19, 
there is no j’ < j such that 

low(j’) = low(j) 
So, increase j by 1



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

j’ j

For j = 19, low(19) = 14 
column j’= 18 is such that low(j’) = low(j) = 14 

So, set  
column 19 := column 19 + column 18          



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 5 15 16 14 22

j

For j = 19, low(19) = 14 
column j’= 18 is such that low(j’) = low(j) = 14 

So, set  
column 19 := column 19 + column 18                 low(19) = 5



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 5 15 16 14 22

j’ j

For j = 19, low(19) = 5 
column j’= 11 is such that low(j’) = low(j) = 5 

So, set  
column 19 := column 19 + column 11   



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

j

For j = 19, low(19) = 5 
column j’= 11 is such that low(j’) = low(j) = 5 

So, set  
column 19 := column 19 + column 11                 low(19)  undefined



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

j

For each j = 19, 
there is no j’ < j such that 

low(j’) = low(j) 
So, increase j by 1



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

19 < j < 22

For each 19 < j < 22, 
there is no j’ < j such that 

low(j’) = low(j) 
So, increase j by 1



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

j’ j

For j = 22, low(22) = 14 
column j’= 18 is such that low(j’) = low(j) = 14 

So, set  
column 22 := column 22 + column 18        



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 13 22

j

For j = 22, low(22) = 14 
column j’= 18 is such that low(j’) = low(j) = 14 

So, set  
column 22 := column 22 + column 18                 low(22) = 13



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 13 22

jj’

For j = 22, low(22) = 13 
column j’= 17 is such that low(j’) = low(j) = 13 

So, set  
column 22 := column 22 + column 17          



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

j

For j = 22, low(22) = 13 
column j’= 17 is such that low(j’) = low(j) = 13 

So, set  
column 22 := column 22 + column 17                 low(22)  undefined



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

j

For each j = 22, 
there is no j’ < j such that 

low(j’) = low(j) 
So, increase j by 1



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

For each j = 23, 
there is no j’ < j such that 

low(j’) = low(j) = 22 
So, matrix R is reduced

j



The algorithm returns the above reduced matrix R

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22



Persistent Homology Computation
Retrieving Persistence Pairs:

✦ For each i = 1, …, n, 

if there exists j such that low(j) = i                       [i, j] is a pair for R

✦ Once every i has been parsed, 

if i is an unpaired value                       [i, ∞) is a pair for R

From pairs of R to the “actual” persistence pairs of {Kp}p:

[i, ∞)  corresponds to  [f(σi), ∞)      

[i, j]  corresponds to  [f(σi), f(σj)]      
( homological degree = dim(σi) )



Persistent Homology Computation
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

H0

H1

[1, ∞) 
[2, ∞) 
[3, 12] 
[4, 8] 
[5, 11] 
[6, 9] 
[7, 10] 
[13, 17] 
[14, 18] 
[15, 20] 
[16, 21]

[19, ∞) 
[22, 23]



Persistent Homology Computation

H0

[1, ∞) 

[1, ∞) 

[1, 2] 
[2, 2] 
[2, 2] 
[2, 2] 
[2, 2] 
[3, 3] 
[3, 3] 
[3, 3] 
[3, 3]

[1, ∞) 

[2, ∞) 

[3, 12] 
[4, 8] 
[5, 11] 
[6, 9] 
[7, 10] 
[13, 17] 
[14, 18] 
[15, 20] 
[16, 21] H1

[3, ∞) 

[3, 3]

[19, ∞) 

[22, 23]

1

2

3
f

1 2 3

4 5 6 7

13 14 15 16

8

11

9 10

12

20 2117 18 19

22

23



Persistent Homology Computation
Standard algorithm to compute (persistent) homology [Zomorodian & Carlsson 2005]:  

✦ Based on a matrix reduc?on 
✦ Linear complexity in prackcal cases 
✦ Cubic complexity in the worst case

Direct approaches: 
✦ Zigzag persistent homology [Milosavljević et al. ’05] 
✦ Computa?on with a twist [Chen, Kerber ’11] 
✦ Dual algorithm [De Silvia et al. ’11] 
✦ Output-sensi?ve algorithm [Chen, Kerber ’13] 
✦ Mul?-field algorithm [Boissonnat, Maria ’14] 
✦ Annota?on-based methods [Boissonnat et al. ’13; Dey et al. ’14]

Distributed approaches: 
✦ Spectral sequences [Edelsbrunner, Harer ’08; Lipsky et al. ’11] 
✦ Construc?ve Mayer-Vietoris [Boltcheva et al. ’11] 
✦ Mul?core coreduc?ons [Murty et al. ’13] 
✦ Mul?core homology [Lewis, Zomorodian ’14] 
✦ Persistent homology in chunks [Bauer et al. ‘14a] 
✦ Distributed persistent computa?on [Bauer et al. ‘14b]

Several different strategies:

Coarsening approaches: 
✦ Topological operators and simplifica?ons [Mrozek, Wanner ’10; Dłotko, Wagner ’14] 
✦ Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]



Persistent Homology Computation

Direct Approaches:

✦ Zigzag persistent homology [Milosavljević et al. ’05] 

✦ Computa?on with a twist [Chen, Kerber ’11] 

✦ Dual algorithm [De Silvia et al. ’11] 

✦ Output-sensi?ve algorithm [Chen, Kerber ’13] 

✦ Mul?-field algorithm [Boissonnat, Maria ’14] 

✦ Annota?on-based methods [Boissonnat et al. ’13; Dey et al. ’14]



Persistent Homology Computation

Distributed Approaches:

✦ Spectral sequences [Edelsbrunner, Harer ’08; Lipsky et al. ’11] 

✦ Construc?ve Mayer-Vietoris [Boltcheva et al. ’11] 

✦ Mul?core coreduc?ons [Murty et al. ’13] 

✦ Mul?core homology [Lewis, Zomorodian ’14] 

✦ Persistent homology in chunks [Bauer et al. ‘14a] 

✦ Distributed persistent computa?on [Bauer et al. ‘14b]



Persistent Homology Computation

Coarsening Approaches:

✦ Topological operators and simplifica?ons [Dłotko, Wagner ’14] 
✤ Acyclic subcomplexes  [Mrozek et al. ‘08] 
✤ Reduckons and coreduckons  [Mrozek et al. ‘10] 
✤ Edge contrackons  [A�ali et al. ’11] 

✦ Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]
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Persistent Homology Computation

Coarsening Approaches:

✦ Topological operators and simplifica?ons [Dłotko, Wagner ’14] 
✤ Acyclic subcomplexes  [Mrozek et al. ‘08] 
✤ Reduckons and coreduckons  [Mrozek et al. ‘10] 
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Persistent Homology Computation

Coarsening Approaches:

✦ Topological operators and simplifica?ons [Dłotko, Wagner ’14] 
✤ Acyclic subcomplexes  [Mrozek et al. ‘08] 
✤ Reduckons and coreduckons  [Mrozek et al. ‘10] 
✤ Edge contrackons  [A�ali et al. ’11] 

✦ Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]
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Some References:

✦ Persistent Homology Computation: 
✤ A. Zomorodian, G. Carlsson. CompuAng persistent homology. Discrete & ComputaBonal Geometry, 

33.2, pages 249-274, 2005. 
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Data Structures



Encoding Simplicial Complexes
Issue:

Solution:
Development of compact and efficient data structures                                

for encoding arbitrary simplicial complexes

It is enough to have a point cloud 
consisting of at least 30 points for 
having to deal with an associated 
filtered simplicial complex of more 
than a billion of simplices



Encoding Simplicial Complexes
Outline:

✦ Which info to be stored? 
✦ Data Structures  

✤ Simplex-based representations  
✤ Top-based representations 
✤ Operator-driven representations  

✦ Comparisons 
✦ Issues and solutions in adopting top-based representations

Out Of Scope:

✦ Data structures for specific classes of complexes  
✤ E.g. manifold or complexes of low dimension



Encoding Simplicial Complexes

The entities which a simplicial complex consists of are:  
✦ its simplices  

K = K0 ∪ K1 ∪ … ∪ Kd  

where Ki is the colleckon of the i-simplices of K 

✦ the topological relations  

Ri,j ⊆ Ki × Kj  

between the simplices of K encoding the (co-)boundary of each simplex

Data Structure:

4

31

2

A data structure for K has to explicitly store a portion of the above 
information and to (efficiently) retrieve the remaining part



                  Given an i-simplex 𝜎 and a j-simplex 𝜏 of K, 

Encoding Simplicial Complexes
Topological Relations:

(𝜎, 𝜏) ∈ Ri,j

  𝜎 ⊆ 𝜏

｜𝜎 ∩ 𝜏⎜= i  (equivalently, 𝜎 ∩ 𝜏 ∈ Ki-1)

  𝜏 ⊆ 𝜎

for i < j

for i = j

for i > j

8
><

>:

(12, 123) ∈ R1,2 (12, 24) ∈ R1,1 (12, 1) ∈ R1,0

4

31

2

An i-simplex 𝜎 is called a top simplex of K if there is                                
no simplex 𝜏 of K such that (𝜎, 𝜏) ∈ Ri,i+1



Encoding Simplicial Complexes

Compactness

Ef
fic

ie
nc

yStore all the 
entities

Store only the 
top simplices

๏ Simplex-based representations
๏ Top-based representations
๏ Operator-driven representations
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Encoding Simplicial Complexes

Compactness

Ef
fic

ie
nc

yStore all the 
entities Incidence 

Graph Simplex 
Tree

Store only the 
top simplices

Skeleton 
Blocker

IA* Data 
Structure

๏ Simplex-based representations
๏ Top-based representations
๏ Operator-driven representations

Stellar 
Tree



The simplicial complex K is encoded via a directed graph G = (N, A):

Simplex-based Representations
Incidence Graph: 4

31

2 123

12 13 23 24 34

1 2 3 4

N ⟷ K

All the relations between simplices can be immediately retrieved 
The representation size exponentially increases with the complex dimension

(𝜎, 𝜏) ∈ A ⟷ (𝜎, 𝜏) ∈ Ri,i+1



The simplicial complex K is encoded via a directed graph G = (N, A):

Simplex-based Representations
Simplex Tree: 4

31

2

N ⟷ K

Graph is not uniquely determined but it depends on the chosen vertex order

(𝜎, 𝜏) ∈ A ⟷ (𝜎, 𝜏) ∈ Ri,i+1 and  I(𝜎) < I(𝜏)

123

12 13 23 24 34

1 2 3 4

where I(𝜎) denotes the maximum value taken by the vertices of 𝜎 w.r.t. a total order on K0



The simplicial complex K is encoded via a directed graph G = (N, A):

Simplex-based Representations
Simplex Tree:

N ⟷ K

Graph is not uniquely determined but it depends on the chosen vertex order

(𝜎, 𝜏) ∈ A ⟷ (𝜎, 𝜏) ∈ Ri,i+1 and  I(𝜎) < I(𝜏)

where I(𝜎) denotes the maximum value taken by the vertices of 𝜎 w.r.t. a total order on K0

123

12 13 14 23 34

1 2 3 4

4

32

1



𝜎, 𝜏 ∈ Ktop  and (𝜎, 𝜏) ∈ Ri,i

𝜎 ∈ Ktop  and (𝜎, 𝜏) ∈ Ri,0

𝜏 ∈ Ktop  and (𝜎, 𝜏) ∈ 

8
><

>:
 (𝜎, 𝜏) ∈ A  ⟷

Top-based Representations

The simplicial complex K is encoded via a directed graph G = (N, A):

IA* Data Structure: 4

31

2

Compact: it explicitly stores just a fraction of the entities of a simplicial complex 

Not all the relations between simplices are immediately available

123 24 34

1 2 3 4

N ⟷ K0 ∪ Ktop



Top-based Representations

Given a decomposition of K0, the simplicial complex K is encoded via a directed graph G = (N, A):

4

31

2

Compact and highly adjustable (e.g. choice of the decomposition, of the maximum number of vertices in each region)  

Not all the relations between simplices are immediately available

Stellar Tree:

plus a map returning, for each j, the vertices of K in Vj and the top simplices with at least one vertex in Vj 

123 24 34

1 2 3 4

V1 V2V3
V1

V2

V3

(𝜎, 𝜏) ∈ A ⟷ 𝜎 ∈ Ktop  and (𝜎, 𝜏) ∈ Ri,0N ⟷ ( K0 = V1 ∪ V2 ∪ … ∪ Vn ) ∪ Ktop



Operator-driven Representations

The simplicial complex K is encoded by storing its 1-skeleton (i.e. the graph consisting of the 0- and  
the 1-simplices) and a map returning, for each 1-simplex 𝜎, the blockers of K containing 𝜎, where: 

Skeleton Blocker: 4

31

2

Designed for flag complexes (e.g. VR complexes) and edge contraction  
Too specific: inefficient in any other task 

{ 234 }
4

31

2

A simplex 𝜏 is a blocker if 𝜏 does not belong to K but all its faces do



Encoding Simplicial Complexes
Top-based vs Simplex-based:



Encoding Simplicial Complexes
Top-based vs Simplex-based:



Encoding Simplicial Complexes
Top-based vs Operator-driven:



Encoding Simplicial Complexes

Top-based representations are promising data structures for encoding a simplicial complex K  

but, how to …  

✦ Store information associated to each simplex of K (e.g. labels, gradient, …)? 

✦ Efficiently perform operators having explicitly stored a fraction of the entities of K?

Possible Issues in Top-based Representations:

A�ach informakon to the 
top simplices only

Re-define the algorithms performing the operators trying to extract  
the lowest possible amount of non-explicitly stored enkkes
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Possible Topics for Seminars

Discrete Morse Theory
Study the shape of a space by studying the behavior of a 

function defined on it



Possible Topics for Seminars

Multi-Parameter Persistent Homology
What if we consider multiple filtering functions?

Image courtesy of  
[Carlsson & Zomorodian 2009]



Possible Topics for Seminars

Persistent Homology & Networks
✦ Homological Scaffolds: Topological summaries of weighted graphs 
✦ Clique Community Persistence: Tracking the evolution of network communities
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Possible Topics for Seminars

Algorithms & Implementation
✦ Efficient computation of Vietoris-Rips complexes and other data-to-complex strategies 
✦ Focus on a specific algorithm for speed-up persistent homology computation 
✦ Use of available software tools for testing persistent homology on various datasets


