Matematica Discreta e Applicazioni
 Topological Data Analysis

Ulderico Fugacci
CNR - IMATI

Topological Data Analysis

Topology describes, characterizes, and discriminates shapes by studying their properties that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing

Topological Data Analysis

Assumption in TDA: Any data can be endowed with a shape.
So, any data can be studied in terms of its topological features

Topological Data Analysis

Topological Data Analysis

Outline:

The Notion of Shape
Simplicial Complexes
Simplicial Homology
From Data to Complexes
Persistent Homology
Visualizing Persistence
Persistence \& Stability
Computing Persistence
Data Structures

The Notion of Shape

Geometry or Topology?

Which of these domains look similar?

Geometry or Topology?

And what about these ones?

Geometry or Topology?

The answer depends on the point of view we adopt

Geometry cares about those properties which change when an object is continuously deformed
E.g. length, area, volume, angles, curvature, ...

Geometry or Topology?

The answer depends on the point of view we adopt

Topology
Ged etry cares about those properties which change when an object is continuously deformed
E.g. connectivity, orientation, manifoldness, ...

Homeomorphisms

Definition:

Given two topological spaces (X, T) and $\left(X^{\prime}, T^{\prime}\right)$,
a function $\mathrm{f}: \mathrm{X} \longrightarrow \mathrm{X}^{\prime}$ is called homeomorphism if:

* fis a bijection
* f is continuous
* f^{-1} is continuous

Two topological spaces (X, T) and ($\mathrm{X}^{\prime}, \mathrm{T}^{\prime}$) are homeomorphic and denoted $X \cong X^{\prime}$ if there exists a homeomorphism $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$

Homeomorphisms induce an equivalence relation of topological spaces partitioning them into equivalence classes

Homeomorphisms

Intuitively:

The notion of homeomorphism captures the idea of continuous deformation

2ll

Homeomorphisms

Intuitively:

One can:

Homeomorphisms

Intuitively:

One can:

* Stretch

Homeomorphisms

Intuitively:

One can:

* Stretch
- Compress

Homeomorphisms

Intuitively:

One can:

* Stretch
+ Compress

But not too much!

Homeomorphisms

Intuitively:

Moreover:

Homeomorphisms

Intuitively:

Moreover:
No Cut

Homeomorphisms

Intuitively:

Moreover:

+ No Cut
* No Glue

Topological Invariants

Definition:

I is a topological invariant if, given two topological spaces (X, T) and $\left(X^{\prime}, T^{\prime}\right)$,

Some classical topological invariants:

* Connectedness
+ Compactness
+ Manifoldness

* Orientability
+ Euler characteristic
+ Homology
+ Homotopy

Topological Invariants

Question:

Is there a "perfect" topological invariant I such that

$$
X \cong X^{\prime} \text { if and only if }\|(X)=\|\left(X^{\prime}\right) ?
$$

Topological Invariants

Question:

Is there a "perfect" topological invariant I such that

$$
X \cong X^{\prime} \text { if and only if }\|(X)=\|\left(X^{\prime}\right) ?
$$

Let us simplify the question and let focus on:

* Considering a specific topological invariant I (e.g. the homology)
* Completely characterizing just the spheres $S^{n}:=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$

The above question turns into the following:
If X and S^{n} have the same homology, then $X \cong S^{n}$?

Topological Invariants

Question:

Is there a "perfect" topological invariant I such that

$$
X \cong X^{\prime} \text { if and only if }\|(X)=\|\left(X^{\prime}\right) ?
$$

Let us simplify the question and let focus on:

* Considering a specific topological invariant I (e.g. the homology)
* Completely characterizing just the spheres $S^{n}:=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$

The above question turns into the following:
If X and S^{n} have the same homology, then $X \cong S^{n}$?

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^{n}, then $X \cong S^{n}$

Proven by Grigori Perelman in 2003

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^{n}, then $X \cong S^{n}$

Proven by Grigori Perelman in 2003

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^{n}, then $X \cong S^{n}$

Proven by Grigori Perelman in 2003

So:
Why we will mainly focus on homology rather than homotopy?

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^{n}, then $X \cong S^{n}$

So:
Why we will mainly focus on homology rather than homotopy?

Because, in practice, computing homotopy groups is nearly impossible!

Bibliography

Some References:

- Books on TDA:
: A. J. Zomorodian. Topology for computing. Cambridge University Press, 2005.
\% H. Edelsbrunner, J. Harer. Computational topology: an introduction. American Mathematical Society, 2010.
\because R. W. Ghrist. Elementary applied topology. Seattle: Createspace, 2014.
+ Papers on TDA:
$\%$ G. Carlsson. Topology and data. Bulletin of the American Mathematical Society 46.2, pages 255-308, 2009.
+ Intro to (Algebraic) Topology:
: E. Sernesi. Geometria 2. Bollati Boringhieri, Torino, 1994.
\% A. Hatcher. Algebraic topology. Cambridge University Press, 2002.

Simplicial Complexes

Complexes \& Data

Goal:

We want to associate a topological structure to a given dataset

Data

Shape

Due to the nature of data and to our computational ambitions, datasets will be represented by "discrete" structures

Among various possibilities, simplicial complexes represent the most suitable choice

In fact, simplicial complexes are able to deal with data:

* of large size (e.g. consisting of a huge number of samples)
* of high dimension (e.g. involving a large number of variables or parameters)
* unorganized (e.g. not arranged in a regular grid)

Simplicial Complexes

Definitions:

A set $V:=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ of points in \mathbb{R}^{n} is called
 geometrically independent if vectors $\mathrm{v}_{1}-\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}-\mathrm{v}_{0}$ are linearly independent over \mathbb{R}
E.g. two distinct points, three non-collinear points, four non-coplanar points

The \boldsymbol{k}-simplex $\sigma=\boldsymbol{v}_{0} \boldsymbol{v}_{1} \ldots \boldsymbol{v}_{k}$ spanned by a geometrically independent set $\mathrm{V}=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$ of in \mathbb{R}^{n} is the convex hull of V, i.e. the set of all points $x \in \mathbb{R}^{n}$ such that

$$
x=\sum_{i=0}^{k} t_{i} v_{i} \text { where } \sum_{i=0}^{k} t_{i}=1 \quad \text { and } \mathrm{t}_{\mathrm{i}} \geq 0 \text { for all } \mathrm{i}
$$

The numbers t_{i} are uniquely determined by x and are called barycentric coordinates of x E.g. a 0 -simplex is a vertex, a 1 -simplex is an edge, a 2 -simplex is a triangle, a 3 -simplex is a tetrahedron

Simplicial Complexes

Definitions:

+ The points $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ spanning a k -simplex σ are called the vertices of σ
* k is called the dimension of σ and denoted as $\operatorname{dim}(\sigma)$
+ Any simplex τ spanned by a non-empty subset of V is called a face of σ
+ Conversely, σ is called a coface of τ

Simplicial Complexes

Definition:

A (geometric) simplicial complex K in \mathbb{R}^{n} is a collection of simplices in \mathbb{R}^{n} such that

* Every face of a simplex of K is in K
* The non-empty intersection of any two simplices of K is a face of each of them

simplicial complex

non-simplicial complex

Simplicial Complexes

Definitions:

Given a (geometric) simplicial complex K in \mathbb{R}^{n},

* The dimension of a simplicial complex K in \mathbb{R}^{n}, denoted as $\operatorname{dim}(K)$, is the supremum of the dimensions of the simplices of K

* A simplex σ of K such that $\operatorname{dim}(\sigma)=\operatorname{dim}(K)$ is called maximal
* A simplex σ of K which is not a proper face of any simplex of K is called top
* A subcollection of K that is itself a simplicial complex is called a subcomplex of K

Simplicial Complexes

Definitions:

Given a simplex σ of a (geometric) simplicial complex K in \mathbb{R}^{n},

* The star of σ is the set $S t(\sigma)$ of the cofaces of σ
* The link of σ is the set $L k(\sigma)$ of the faces of the simplices in $\operatorname{St}(\sigma)$ such that do not intersect σ

Simplicial Complexes

Definitions:

Given a simplex σ of a (geometric) simplicial complex K in \mathbb{R}^{n},

* The star of σ is the set $S t(\sigma)$ of the cofaces of σ
* The link of σ is the set $L k(\sigma)$ of the faces of the simplices in $\operatorname{St}(\sigma)$ such that do not intersect σ

Simplicial Complexes

Given a (geometric) simplicial complex K in \mathbb{R}^{n}, its polytope $|K|$ is the subset of \mathbb{R}^{n} defined as the union of the simplices of K

The polytope $|K|$ can be endowed with two possible topologies T_{1} and T_{2} :
$\star T_{1}$: A subset F of $|\mathrm{K}|$ is a closed set of $\left(|\mathrm{K}|, \mathrm{T}_{1}\right)$ if and only if $\mathrm{F} \cap \sigma$ is a closed set of $\left(\sigma, T_{\sigma}\right)$ for each σ in K where T_{σ} is the subspace topology induced on σ by \mathbb{E}^{n}
${ }^{*} T_{2}$: The subspace topology induced on $|K|$ by \mathbb{E}^{n}
In general, the two topologies $\mathrm{T}_{1}, \mathrm{~T}_{2}$ are different, but

Proposition: If K is a finite simplicial complex, $T_{1}=T_{2}$
From now on, if not differently specified, we consider only finite simplicial complexes

Simplicial Complexes

Proposition:

Given a simplicial complex K and a topological space (X, T), a function from (|K|, T_{1}) to (X, T) is continuous if and only if $f l_{\sigma}$ is continuous for each $\sigma \in K$

Definition:

Given two simplicial complexes K and K^{\prime},

* A function $f: K \rightarrow K^{\prime}$ is called a simplicial map if for every simplex $\sigma=v_{0} \mathrm{~V}_{1} \ldots \mathrm{v}_{\mathrm{k}}$ in K , $f(\sigma)=f\left(v_{0}\right) f\left(v_{1}\right) \ldots f\left(v_{k}\right)$ is a simplex in K^{\prime}
* The restriction f_{v} of f to the set of vertices V of K is called the vertex map of f

Simplicial Complexes

Definition:

An abstract simplicial complex K on a set V is a collection of finite non-empty subsets of V , called simplices, such that if $\sigma \in \mathrm{K}$ and $\tau \subseteq \sigma$, then $\tau \in \mathrm{K}$ Analogously to the case of a geometric simplicial complex,

* The elements of V are called vertices of K
* The dimension of a simplex σ is one less than the number of its elements
* The supremum of the dimensions of the simplices in K is called dimension of K
* Each non-empty subset τ of a simplex $\sigma \in \mathrm{K}$ is called a face of σ and σ is called a coface of τ

The notions of geometric simplicial complex and abstract simplicial complex are equivalent. More properly, it is always possible,

* Given an abstract simplicial complex, to endow it with a geometric realization
* Given a geometric simplicial complex, to forget its geometry thus obtaining an abstract simplicial complex

Simplicial Complexes

Definition: A simplicial complex K is called

* n-manifold [with boundary] if its polytope $|\mathrm{K}|$ is a (topological) n-manifold [with boundary]
* Combinatorial n-manifold [with boundary] if, for every vertex v, the link Lk(v) is homeomorphic to the ($n-1$)-sphere S^{n-1} [or to the ($n-1$)-disk $\left.D^{n-1}:=\left\{x \in \mathbb{R}^{n-1}:|x| \leq 1\right\}\right]$

If K is a combinatorial n-manifold [with boundary], then K is a n-manifold [with boundary]
The converse is:
True for $n \leq 3$
Open for $n=4$
False for $n>4$

Regular Grids

Hyper-Cube:

A \boldsymbol{k}-hyper-cube $\boldsymbol{\eta}$ is the Cartesian product of k closed intervals of equal length

Regular Grids:

A regular grid H is a (finite) collection of hyper-cubes such that:

* Each face of a hyper-cube of H is in H
* Each non-empty intersection of two hyper-cubes in H is a face of both
* The domain of H is a hyper-cube

Cell Complexes

Intuitively:

Similarly to simplicial complexes and regular grids,

> A cell complex 「 is a collection of cells "suitably glued together"

Where a k-cell is a topological space homeomorphic to the k-dimensional open disk $i\left(D^{k}\right)$

Bibliography

Some References:

+ Simplicial Complexes:
\% J. R. Munkres. Elements of algebraic topology. CRC Press, 1984.

Simplicial Homology

Simplicial Homology

Given a topological space X, the homology of X is a topological invariant
detecting the "holes" of X
capturing the independent non-bounding cycles of X
measuring how far the chain complex associated with X is from being exact

$$
\longmapsto H_{k}(X ; \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & \text { for } k=0 \\ \mathbb{Z}^{6} & \text { for } k=1 \\ \mathbb{Z} & \text { for } k=2 \\ 0 & \text { otherwise }\end{cases}
$$

Simplicial Homology

Simplicial Homology

Given a simplicial complex K,

* a k-chain is a formal sum (with \mathbb{Z}_{2} coefficients) of k-simplices of K

Examples:

$+a+b+e$ is a 0-chain

+ $f g+d g+d e+e g$ is a 1-chain
* $a b g+a f g$ is a 2-chain

Simplicial Homology

The chain complex $\boldsymbol{C}_{*}(\boldsymbol{K})$ associated with K consists of:

* a collection $\left\{C_{k}(K)\right\}_{k \in \mathbb{Z}}$ of vector spaces where $C_{k}(K)$ is the group of the k-chains of K
* a collection $\left\{\partial_{k}\right\}_{k \in \mathbb{Z}}$ of linear maps where the boundary map $\partial_{k}: C_{k}(K) \longrightarrow C_{k-1}(K)$ is defined by

$$
\partial_{k}\left(v_{0} \cdots v_{k}\right):=\sum_{i=0}^{k} v_{0} \cdots \hat{v}_{i} \cdots v_{k}
$$

Simplicial Homology

Examples:

$+\partial_{1}(a b)=a+b$
${ }^{+} \partial_{1}(a b+b c)=a+2 b+c=a+c$

* $\boldsymbol{\partial}_{\mathbf{2}}(a f g+e f g)=a f+a g+2 f g+e f+e g=$
$=a f+a g+e f+e g$
+ $\partial_{1}(a f+a g+e f+e g)=$
$=2 a+2 f+2 g+2 e=0$

Simplicial Homology

Properties:

* For $k<0$ or $k>\operatorname{dim}(K), C_{k}(K)$ is the null group
* For $k \leq 0$ or $k>\operatorname{dim}(K), \partial_{k}$ is the null map
* For any $k \in \mathbb{Z}, \partial_{k} \circ \partial_{k+1}=0$
\star For any $k \in \mathbb{Z}, \operatorname{Im}\left(\partial_{k+1}\right) \subseteq \operatorname{Ker}\left(\partial_{k}\right)$

Simplicial Homology

Definition:

A k-chain c is called:

* k-cycle if $\mathrm{c} \in \operatorname{Ker}\left(\partial_{\mathrm{k}}\right)$
+ k-boundary if $\mathrm{c} \in \operatorname{Im}\left(\mathrm{d}_{\mathrm{k}+1}\right)$

Each k-boundary is a k-cycle

Simplicial Homology

Given a simplicial complex K, the k-homology group $\boldsymbol{H}_{k}(K)$ of K is defined as

$$
H_{k}(K):=Z_{k}(K) / B_{k}(K)
$$

where:
$\leftrightarrow Z_{k}(K)$ is the group of k-cycles of K

* $B_{k}(K)$ is the group of k-boundaries of K

Simplicial Homology

$H_{k}(K)$ partitions the k-cycles into equivalence classes called homology classes

Definition:

Two k-cycles are said homologous
if they belong to the same
homology class or, equivalently, if their difference is a k-boundary

Simplicial Homology

Each homology group can be expressed as

$$
H_{k}(K) \cong\left(\mathbb{Z}_{2}\right)^{\beta_{k}}
$$

$$
H_{k}(K) \cong \begin{cases}\mathbb{Z}_{2} & \text { for } k=0 \\ \left(\mathbb{Z}_{2}\right)^{6} & \text { for } k=1 \\ \mathbb{Z}_{2} & \text { for } k=2\end{cases}
$$

β_{k} is called the $k^{\text {th }}$ Betti number of K

Simplicial Homology

Examples:

+ point P

$$
\beta_{k}(P)= \begin{cases}1 & \text { for } k=0 \\ 0 & \text { for } k>0\end{cases}
$$

* n-dimensional sphere S^{n}

$$
\beta_{k}\left(S^{n}\right)= \begin{cases}1 & \text { for } k=0 \\ 0 & \text { for } 0<k<n \\ 1 & \text { for } k=n \\ 0 & \text { for } k>n\end{cases}
$$

$$
\beta_{k}(T)= \begin{cases}1 & \text { for } k=0 \\ 2 & \text { for } k=1 \\ 1 & \text { for } k=2 \\ 0 & \text { for } k>2\end{cases}
$$

Simplicial Homology

Homology groups can be defined in a more general way by choosing coefficients in \mathbb{Z}

Theorem:

Each homology group can be expressed as

$$
H_{k}(K ; \mathbb{Z}) \cong \mathbb{Z}^{\beta_{k}}\left\langle c_{1}, \ldots, c_{\beta_{k}}\right\rangle \oplus \mathbb{Z}_{\lambda_{1}}\left\langle c_{1}^{\prime}\right\rangle \oplus \cdots \oplus \mathbb{Z}_{\lambda_{p_{k}}}\left\langle c_{p_{k}}^{\prime}\right\rangle
$$

with $\lambda_{i+1} \mid \lambda_{i}$

We call:

* β_{k}, the $k^{\text {th }}$ Betti number of K
${ }^{\star} \lambda_{1}, \ldots, \lambda_{p_{k}}$, the torsion coefficients of K
${ }^{\star} c_{1}, \ldots, c_{\beta_{k}}, c_{1}^{\prime}, \ldots, c_{p_{k}}^{\prime}$, the homology generators of K

Simplicial Homology

Working with coefficients in \mathbb{Z} :

Up to isomorphism, the Betti numbers and the torsion coefficients of K completely characterize the homology groups of K

Working with coefficients in a field \mathbb{F} :

Up to isomorphism, the Betti numbers of K completely characterize the homology groups of K

Simplicial Homology

Example:

The Klein bottle \boldsymbol{K} is a non-orientable 2-dimensional manifold embeddable in \mathbb{R}^{4} which can be built from a unit square by the following construction

Simplicial Homology

Example:

By considering \mathbb{Z} as coefficient group,
K has the following homology groups

$$
H_{k}(K ; \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & \text { for } k=0 \\ \mathbb{Z} \oplus \mathbb{Z}_{2} & \text { for } k=1 \\ 0 & \text { for } k \geq 2\end{cases}
$$

So, it can be distinguished from a torus T

$$
H_{k}(T ; \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & \text { for } k=0 \\ \mathbb{Z}^{2} & \text { for } k=1 \\ \mathbb{Z} & \text { for } k=2 \\ 0 & \text { for } k>2\end{cases}
$$

Simplicial Homology

Example:

By considering \mathbb{Z}_{2} as coefficient group,
the Klein bottle K and the torus T have isomorphic homology groups

Bibliography

Some References:

+ Simplicial Homology:
\% J. R. Munkres. Elements of algebraic topology. CRC Press, 1984.

From Data to Complexes

From Data to Complexes

Let us consider a dataset represented by a finite point cloud V in \mathbb{R}^{n}

Studying the shape of V just by considering the space consisting of its points does not provide any relevant topological information

The "real" shape of the dataset can be captured by properly constructing a complex connecting together close points through simplices

From Data to Complexes

Standard Constructions:

A number of possible choices have been introduced in the literature:

+ Delaunay triangulations
* Voronoi diagrams
+ Čech complexes
* Vietoris-Rips complexes
+ Alpha-shapes
* Witness complexes

Most of the above constructions are based on the notion of Nerve complex

From Data to Complexes

A First Classification:

Given a finite point cloud V in \mathbb{R}^{n},

Delaunay	Output Complex	Dimension	Dependence on a Parameter
Griangulation	Geometric	n	X
Čech complex	Abstract	Arbitrary (up to $/ V /-1)$	
Vietoris-Rips complex	Abstract	Arbitrary (up to $/ V /-1)$	
Alpha-shapes	Geometric	n	
Witness complexes	Abstract	Arbitrary (upto $/ V /-1$)	

Nerve Complexes

Definition:

Given a finite collection S of sets in \mathbb{R}^{n},
The nerve $\operatorname{Nrv}(S)$ of S is the abstract simplicial complex generated by the non-empty common intersections

Formally,

$$
\operatorname{Nrv}(S):=\left\{\sigma \subseteq S \mid \bigcap_{s \in \sigma} s \neq \emptyset\right\}
$$

Nerve Complexes

Definition:

Given a finite collection S of sets in \mathbb{R}^{n},
The nerve $\operatorname{Nrv}(S)$ of S is the abstract simplicial complex generated by the non-empty common intersections

Formally,

$$
\operatorname{Nrv}(S):=\left\{\sigma \subseteq S \mid \bigcap_{s \in \sigma} s \neq \emptyset\right\}
$$

Nerve Complexes

Nerve Theorem:

If S is a finite collection of convex sets in \mathbb{R}^{n}, then the nerve of S and the union of the sets in S are homotopy equivalent (and so they have the same homology)

Nerve Complexes

Nerve Theorem can be generalized by replacing the convexity of sets in S with the request that all non-empty common intersections are contractible (i.e. that can be continuously shrunk to a point)

Original Nerve Theorem:

If S is an open cover of a (para)compact space X such that every non-empty intersection of finitely many sets in S is contractible, then X is homotopy equivalent to the nerve $\operatorname{Nrv(S)}$

Delaunay Triangulations

Given a finite point cloud V in \mathbb{R}^{n},
The Delaunay triangulation of V is a classic notion in Computational Geometry:

* Producing a "nice" triangulation of V
* free of long and skinny triangles
* Named after Boris Delaunay for his work on this topic from 1934
* Originally defined for sets of points in \mathbb{R}^{2} but generalizable to arbitrary dimensions

Delaunay Triangulations

Definitions:

Given a finite point cloud V in \mathbb{R}^{2},

* The convex hull of V is the smallest convex subset $C H(V)$ of \mathbb{R}^{2} containing all the points of V

- A triangulation of V is A 2-dimensional simplicial complex \boldsymbol{K} such that:
* The domain of K is $\mathrm{CH}(\mathrm{V})$
* The 0 -simplices of K are the points in V

Delaunay Triangulations

Definition:

A Delaunay triangulation is a triangulation $\operatorname{Del}(\mathrm{V})$ of V such that: the circumcircle of any triangle does not contain any point of V in its interior

Delaunay Triangulations

Definition:

A finite set of points V in \mathbb{R}^{n} is in general position if no $n+2$ of the points lie on a common ($n-1$)-sphere
E.g. , for $\boldsymbol{n}=\mathbf{2}$,
V in general
position

No four or more points are co-circular

Theorem:

If V is in general position, then $\operatorname{Del}(V)$ is unique

Delaunay Triangulations

Definitions:

The Voronoi region of u in V is the set of points of \mathbb{R}^{2} for which u is the closest

$$
R_{V}(u):=\left\{x \in \mathbb{R}^{2} \mid \forall v \in V, d(x, u) \leq d(x, v)\right\}
$$

* Any Voronoi region is a convex closed subset of \mathbb{R}^{2}

4 A Voronoi region is not necessarily bounded

The Voronoi diagram is the collection $\operatorname{Vor}(V)$ of the Voronoi regions of the points of \vee

Delaunay Triangulations

Duality Property:

If V is in general position, then
the Delaunay triangulation coincides with the nerve of the Voronoi diagram

$$
\operatorname{Del}(V)=\left\{\sigma \subseteq V \mid \bigcap R_{V}(u) \neq \emptyset\right\}
$$

$$
u \in \sigma
$$

* Each point u of V corresponds to a Voronoi region Rv(u)
* Each triangle t of $\operatorname{Del}(V)$ correspond to a vertex in $\operatorname{Vor}(V)$
* Each edge $e=(u, v)$ in $\operatorname{Del}(V)$ corresponds to an edge shared by the two Voronoi regions $R_{V}(u)$ and $R_{V}(v)$

Delaunay Triangulations

Algorithms:

+ Two-step algorithms:
* Computation of an arbitrary triangulation K^{\prime}
* Optimization of K^{\prime} to produce a Delaunay triangulation
+ Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]:
* Modification of an existing Delaunay triangulation while adding a new vertex at a time
+ Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]:
* Recursive partition of the point set into two halves
* Merging of the computed partial solutions
+ Sweep-line algorithms [Fortune 1989]:
* Step-wise construction of a Delaunay triangulation while moving a sweep-line in the plane

Delaunay Triangulations

Watson's Algorithm:

A Delaunay triangulation is computed by incrementally adding a single point to an existing Delaunay triangulation

Let V_{i} be a subset of V and let u be a point in $V \backslash V_{i}$,

Input:

$\operatorname{Del}\left(\mathrm{V}_{\mathrm{i}}\right)$, a Delaunay triangulation of V_{i}

Output:

$\operatorname{Del}\left(\mathbf{V}_{\mathrm{i}+1}\right)$, a Delaunay triangulation of $\mathbf{V}_{\mathrm{i}+1}:=\mathrm{V}_{\mathrm{i}} \cup\{\mathbf{u}\}$

Delaunay Triangulations

Watson's Algorithm:

Given a Delaunay triangulation $\operatorname{Del}\left(V_{i}\right)$ of V_{i} and a point u in $V \backslash V_{i}$,

* The influence region R_{u} of a point u is the region in the plane formed by the union of the triangles in Del(V_{i}) whose circumcircle contains u in its interior
* The influence polygon P_{u} of u is the polygon formed by the edges of the triangles of $\operatorname{Del}\left(V_{i}\right)$ which bound R_{u}

Delaunay Triangulations

Watson's Algorithm:

- Step 1:

Deletion of the triangles of $\operatorname{Del}\left(\mathrm{V}_{\mathrm{i}}\right)$ forming the influence region R_{u}

+ Step 2:
Re-triangulation of R_{u} by joining u to the vertices of the influence polygon P_{u}

Delaunay Triangulations

Watson's Algorithm:

Let $N_{i}=\left|\mathrm{V}_{\mathrm{i}}\right|$

* Detection of a triangle of $\operatorname{Del}\left(V_{i}\right)$ containing the new point $u: O\left(N_{i}\right)$ in the worst case
* Detection of the triangles forming the region of influence through a breadth-first search: O(|Rul)
* Re-triangulation of P_{u} is in $O\left(\left|P_{u}\right|\right)$
* Inserting a point u in a triangulation with N_{i} vertices: $O\left(N_{i}\right)$ in the worst case
* Inserting all points of $\mathrm{V}: O\left(\mathrm{~N}^{2}\right)$ in the worst case, where $\mathrm{N}=|\mathrm{V}|$

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

* $B_{u}(r)$, the closed ball with center $u \in V$ and radius r
* S, the collection of these balls

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

* $B_{u}(r)$, the closed ball with center $u \in V$ and radius r
* S, the collection of these balls

The Čech complex Čech(r) of V of radius r is the nerve of S

$$
\check{C} \operatorname{ech}(r):=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} B_{u}(r) \neq \emptyset\right\}
$$

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

* $B_{u}(r)$, the closed ball with center $u \in V$ and radius r
* S, the collection of these balls

The Čech complex Čech(r) of V of radius r is the nerve of S

$$
\check{C} e c h(r):=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} B_{u}(r) \neq \emptyset\right\}
$$

Čech Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n}, let us consider:

* $B_{u}(r)$, the closed ball with center $u \in V$ and radius r
* S, the collection of these balls

The Čech complex Čech(r) of V of radius r is the nerve of S

$$
\check{C} e c h(r):=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} B_{u}(r) \neq \emptyset\right\}
$$

In practice, infeasible construction

Vietoris-Rips Complexes

Definition:

Given a finite set of points V in \mathbb{R}^{n},

The Vietoris-Rips complex $V R(r)$ of V and r is the abstract simplicial complex consisting of all subsets of diameter at most $2 r$

Formally,

$$
V R(r):=\{\sigma \subseteq V \mid d(u, v) \leq 2 r, \forall u, v \in \sigma\}
$$

Vietoris-Rips Complexes

Properties:

- $\check{C} e c h(r) \subseteq V R(r) \subseteq \check{C} e c h(\sqrt{2} r)$

Vietoris-Rips Complexes

Properties:

- $\check{C} e c h(r) \subseteq V R(r) \subseteq \check{C} e c h(\sqrt{2} r)$
* VR(r) is completely determined by its 1-skeleton
* I.e. the graph G of its vertices and its edges

Vietoris-Rips Complexes

Algorithms:

Input: $\quad \mathrm{A}$ finite set of points V in \mathbb{R}^{n} and a real positive number r
Output: The Vietoris-Rips complex VR(r)
A two-step approach is typically adopted:

+ Step 1 - Skeleton Computation:
* Exact ($\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ time complexity)
* Approximate
* Randomized
* Landmarking
* Step 2 - Vietoris-Rips Expansion:
* Inductive
* Incremental
* Maximal

Vietoris-Rips Complexes

Algorithms:

Input: $\quad \mathrm{A}$ finite set of points V in \mathbb{R}^{n} and a real positive number r
Output: The Vietoris-Rips complex VR(r)
A two-step approach is typically adopted:

+ Step 1 - Skeleton Computation:
* Exact ($\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ time complexity)
* Approximate
* Randomized
* Landmarking
* Step 2 - Vietoris-Rips Expansion:
* Inductive
* Incremental

* Maximal

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

$$
\text { for } i=1 \text { to } k
$$

foreach i-simplex $\sigma \in K$
$N=\cap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K
LOWER-NBRS(G, u)
return $\{v \in V \mid v<u,(u, v) \in E\}$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

$$
\text { for } i=1 \text { to } k
$$

foreach i-simplex $\sigma \in K$
$N=\cap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

$$
N=\{ \}
$$

return K
LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

$$
\sigma=(1,2)
$$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

$$
\text { for } i=1 \text { to } k
$$

foreach i-simplex $\sigma \in K$
$N=\cap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K

$$
N=\{1\}
$$

LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

$$
\sigma=(2,3)
$$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

$$
\text { for } i=1 \text { to } k
$$

foreach i-simplex $\sigma \in K$
$N=\cap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K
LOWER-NBRS(G, u)
return $\{v \in V \mid v<u,(u, v) \in E\}$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

$$
\text { for } i=1 \text { to } k
$$

foreach i-simplex $\sigma \in K$
$N=\cap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K

$$
N=\{1\}
$$

LOWER-NBRS(G, u) return $\{v \in V \mid v<u,(u, v) \in E\}$

$$
\sigma=(3,4)
$$

Vietoris-Rips Complexes

Inductive VR expansion:

Input: \quad The 1-skeleton $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of $\mathrm{VR}(\mathrm{r})$
Output: The k-skeleton K of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

$$
K=V \cup E
$$

$$
\text { for } i=1 \text { to } k
$$

foreach i-simplex $\sigma \in K$
$N=\cap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$ foreach $v \in N$

$$
K=K \cup\{\sigma \cup\{v\}\}
$$

return K
LOWER-NBRS(G, u)
return $\{v \in V \mid v<u,(u, v) \in E\}$

From Data to Complexes

Alpha-Shapes

Definition:

Given a finite set of points V in general position of \mathbb{R}^{n}, let us consider:

* $A_{u}(r):=B_{u}(r) \cap R_{v}(u)$, the intersection of the closed ball with center $u \in V$ and radius r and the Voronoi region of u
* S, the collection of these convex sets

The alpha-shape Alpha(r) of V of radius r is the nerve of S

Formally,

$$
\text { Alpha(r) }:=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} A_{u}(r) \neq \emptyset\right\}
$$

$A_{u}(r) \subseteq B_{u}(r) \square A l p h a(r) \subseteq \check{C} e c h(r)$

Witness Complexes

Motivation:

The "shape" of a point cloud can be captured without considering all the input points

Definitions:

+ Landmarks:
Selected points
* Witnesses:

Remaining points

Witness Complexes

Definition:

The witness complex $W(r)$ of radius r is defined by:

* u is in $W(r)$ if u is a landmark
* (u, v) is in $W(r)$ if there exists a witness w such that

$$
\max \{d(u, w), d(v, w)\} \leq m_{w}+r
$$

where m_{w} : = the distance of w from the 2 nd closest landmark

+ the i-simplex σ is in $W(r)$ if all its edges belong to $W(r)$
$W_{o}(r)$ is defined by setting $m_{w}=0$ for any witness w

$$
W_{0}(r) \subseteq V R(r) \subseteq W_{0}(2 r)
$$

From Data to Complexes

Not Only Point Clouds in \mathbb{R}^{n}

Most of the presented constructions can be generalized/adapted to the case of a finite collection of elements endowed with a notion of proximity* enabling to cover a wide plethora of datasets
*More properly, a semi-metric, i.e. a distance not necessarily satisfying the triangle inequality

From Data to Complexes

Not Only Point Clouds in \mathbb{R}^{n}

+ Point Clouds:
* Delaunay triangulation
* Čech complexes

* Vietoris-Rips complexes
* Alpha-shapes
* Witness complexes complexes
* Graphs and Complex Networks:
* Flag complexes
+ Functions:
* Sublevel sets

From Data to Complexes

Flag Complex of a Weighted Network:

Let $\mathrm{G}:=(\mathrm{V}, \mathrm{E}, \mathrm{w}: \mathrm{E} \rightarrow \mathbb{R})$ be a weighted undirected graph representing a network:

From Data to Complexes

Flag Complex of a Weighted Network:

From Data to Complexes

Flag Complex of a Weighted Network:
$\varepsilon=1$

From Data to Complexes

Flag Complex of a Weighted Network:
$\varepsilon=2$

From Data to Complexes

Flag Complex of a Weighted Network:
$\varepsilon=3$

From Data to Complexes

Sublevel Sets of Functions

Given a function $f: D \longrightarrow \mathbb{R}$,

- Step 1:

Transform $f: D \rightarrow \mathbb{R}$ into a function $F: K \rightarrow \mathbb{R}$ defined on a simplicial complex K
E.g. if D is a point cloud, construct from it a simplicial complex K and define F as

$$
F(\sigma):=\max \{f(v) \mid v \text { is a vertex of } \sigma\}
$$

+ Step 2:
Build the collection $\left\{K^{r}\right\}_{r \in \mathbb{R}}$ of the sublevel sets of F defined as

$$
K^{r}:=\{\sigma \in K \mid F(\sigma) \leq r\}
$$

Notice that K^{r} is a simplicial complex whenever: if τ is a face of σ then $F(\tau) \leq F(\sigma)$

From Data to Complexes

Sublevel Sets of Functions

Given a function $F: K \rightarrow \mathbb{R}$,

$$
K^{r}:=\{\sigma \in K \mid F(\sigma) \leq r\}
$$

From Data to Complexes

Sublevel Sets of Functions

Given a function $F: K \rightarrow \mathbb{R}$,

$$
K^{r}:=\{\sigma \in K \mid F(\sigma) \leq r\}
$$

From Data to Complexes

Sublevel Sets of Functions

Given a function $F: K \rightarrow \mathbb{R}$,

$$
K^{r}:=\{\sigma \in K \mid F(\sigma) \leq r\}
$$

Bibliography

Some References:

+ From Data to Complexes:
\% H. Edelsbrunner, Geometry and Topology for Mesh Generation. Cambridge University Press, 2001.
\% V. de Silva, G. Carlsson. Topological estimation using witness complexes. SPBG 4, pages 157-166, 2004.
$\%$ A. Zomorodian, Fast construction of the Vietoris-Rips complex. Computers \& Graphics 34.3, pages 263-271, 2010.
\% H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Science \& Business Media, 2012.

Persistent Homology

Persistent Homology

* Do they have the same shape?

Persistent Homology

+ Do they have the same shape?

In Practice?
In Theory?

Persistent Homology

+ Do they have the same shape?

In Practice?
In Theory?

Persistent Homology

\& Do they have the same shape?

Persistent Homology

\& Do they have the same shape?

In Practice?

Persistent Homology

\& Do they have the same shape?

In Practice?

In Theory?

They are not homeomorphic

Persistent Homology

* Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data

Topological Nature of the "Underlying" Shape

Persistent Homology

+Which is the shape of a given data?
Persistent homology allows for the retrieval of the "actual" homological information of a data

Persistent Homology

In a Nutshell:

Persistent homology allows for describing the changes in the shape of an evolving object

Persistent Homology

An Evolving Notion:

Size Functions:

* Estimation of natural pseudo-distance between shapes endowed with a function f
* Tracking of the connected components of a
 shape along its evolution induced by f

Actually, this coincides with persistent homology in degree 0

Persistent Homology

An Evolving Notion:

Incremental Algorithm for Betti Numbers:

- Introduction of the notion of filtration
+ De facto computation of persistence pairs

Persistent Homology

An Evolving Notion:

Persistent Homology

An Evolving Notion:

2002

Edelsbrunner, Letscher,
Zomorodian

Topological Persistence:

* Introduction and algebraic formulation of the notion of persistent homology
* Description of an algorithm for computing persistent homology

Persistent Homology

Definition:

Intuitively, a filtration \mathcal{F} is a finite "growing" sequence of simplicial complexes

Formally, a filtration \mathcal{F} of a simplicial complex K is a collection of subcomplexes $\left\{K^{p}\right.$ $\}_{p \in \mathbb{R}}$ of K for which, given any $p, q \in \mathbb{R}$ such that $p \leq q$,

$$
K^{p} \subseteq K^{q}
$$

Persistent Homology

Most of the techniques transforming a dataset into a simplicial complex depending on the choice of a parameter actually produce a filtration $\left\{K^{p}\right\}_{p \in \mathbb{R}}$

Working Assumption:
We can always pretend that parameter p varies over \mathbb{N}

Persistent Homology

Definition:

Given a filtration $\mathcal{F}:=\left\{K^{p}\right\}_{p \in \mathbb{N}}$, a value $i \in \mathbb{N}$, and a field \mathbb{F}, the $i^{\text {th }}$ persistence module M of \mathcal{F} over \mathbb{F} is defined as the finitely generated graded $\mathbb{F}[x]$-module

$$
M:=\bigoplus_{p \in \mathbb{N}} M_{p}
$$

where:

+ $M_{p}:=H_{i}\left(K^{p} ; \mathbb{F}\right)$, the set of homogeneous elements of grade p
*The action $x^{q-p} h$ over an element h of grade p is defined as $\mu_{i} p, q(h)$, where:
$* \mu_{i} p, q(h): H_{i}\left(K^{p} ; \mathbb{F}\right) \rightarrow H_{i}\left(K^{q} ; \mathbb{F}\right)$ is the linear map induced by the inclusion $K^{p} \subseteq$ K^{q}

Persistent Homology

Theorem (structure for finitely generated graded modules over a PID):
Any persistence module M can be expressed as

$$
M \cong \bigoplus_{k=1}^{n} \mathbb{F}[x]\left(-r_{k}\right) \oplus \bigoplus_{j=1}^{m}\left(\mathbb{F}[x] /\left(x^{q_{j}-p_{j}}\right)\right)\left(-p_{j}\right)
$$

So, M is completely determined by the collection of values r_{k} and of pairs $\left(p_{j}, q_{j}\right)$ Such descriptors are typically expressed as pairs, called persistence pairs of M, of the kind $\left(r_{k}, \infty\right)$ and $\left(p_{j}, q_{j}\right)$

Persistent Homology

Intuitively:

Given a filtration $\mathcal{F}:=\left\{K^{p}\right\}_{p \in \mathbb{N}}$, a persistence pair $(p, q) \in \mathbb{N} \times(\mathbb{N} \cup\{\infty\})$ with $p<q$ represents a homological class that is born at step \mathbf{p} and dies at step \mathbf{q}

Persistent Homology

Intuitively:

Given a filtration $\mathcal{F}:=\left\{K^{p}\right\}_{p \in \mathbb{N}}$, a persistence pair $(p, q) \in \mathbb{N} \times(\mathbb{N} \cup\{\infty\})$ with $p<q$ represents a homological class that is born at step \mathbf{p} and dies at step \mathbf{q}

$(2,3)$

Persistent Homology

Intuitively:

Given a filtration $\mathcal{F}:=\left\{K^{p}\right\}_{p \in \mathbb{N}}$, a persistence pair $(p, q) \in \mathbb{N} \times(\mathbb{N} \cup\{\infty\})$ with $p<q$ represents a homological class that is born at step \mathbf{p} and dies at step \mathbf{q}

(2, ∞) essential pair

Persistent Homology

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

It is possible to compare two shapes by comparing their homology groups

Persistent Homology

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

It is possible to compare two shapes by comparing their ho

Persistent Homology

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

It is possible to compare two shapes by comparing their ho

In order to better perform the above task, we need:

* Visual and descriptive representations for persistence pairs
* Notions of distance between sets of persistence pairs and stability results

Bibliography

Some References:

+ Persistent Homology:
\% U. Fugacci, S. Scaramuccia, F. Iuricich, L. De Floriani. Persistent homology: a step-by-step introduction for newcomers. Eurographics Italian Chapter Conference, pages 1-10, 2016.

Visualizing Persistence

Persistent Homology

(Persistent) Homology allows for assigning to any (filtered) simplicial complex topological information expressed in terms of algebraic structures

Goal:
We address two main questions:

* Can this topological information be characterized in a simpler and "more visualizable" way?
* Is this information stable under small perturbations of the input data?

Visualizing Persistence

Given a filtration \mathcal{F},

Persistent pairs of \mathscr{F} can be visualized through:
\& Barcodes [Carlsson et al. 2005; Ghrist 2008]

* Persistence diagrams [Edelsbrunner, Harer 2008]
* Persistence landscapes [Bubenik 2015]
* Corner points and lines [Frosini, Landi 2001]
* Half-open intervals [Edelsbrunner et al. 2002]
* k-triangles [Edelsbrunner et al. 2002]

Visualizing Persistence

Barcodes:

Persistence pairs are represented as intervals in \mathbb{R}

H_{0}
H_{1}

Visualizing Persistence

Persistence Diagrams: Persistence pairs are represented as points in \mathbb{R}^{2}

Visualizing Persistence

Persistence Diagrams: Persistence pairs are represented as points in $\mathbb{R} \times(\mathbb{R} \cup\{\infty\})$

Formally, a persistence diagram is a multiset

- Points are endowed with multiplicity

Visualizing Persistence

Both tools visually represent the lifespan of the homology classes:

* Barcode: length of the intervals
* Persistence Diagram: distance from the diagonal

Barcodes and Persistence Diagrams encode equivalent information

Visualizing Persistence

Barcodes and Persistence Diagrams encode equivalent information

Visualizing Persistence

Persistence Landscapes:

Persistence landscapes are statistics-friendly representations of persistence pairs

Given a persistence module M, persistence landscapes

+ Consist of a collection of 1-Lipschitz functions
+ Lie in a vector space
+ Are stable (under small perturbations of the input filtration)

Visualizing Persistence

Persistence Landscapes:

Given a persistence module M,

Formally,

$$
\begin{gathered}
\lambda_{i}(x):=\sup \left\{m \geq 0 \mid \beta^{x-m, x+m} \geq i\right\} \\
\text { where } \beta^{p, q}:=\operatorname{dim}\left(\operatorname{Im}\left(\mu^{p, q}: M_{p} \rightarrow M_{q}\right)\right)
\end{gathered}
$$

Visualizing Persistence

Persistence Landscapes:

Mean of persistence diagrams is not unique, but ...

Mean of persistence landscapes is well-defined

Bibliography

Some References:

+ Persistent Homology:
\% U. Fugacci, S. Scaramuccia, F. Iuricich, L. De Floriani. Persistent homology: a step-by-step introduction for newcomers. Eurographics Italian Chapter Conference, pages 1-10, 2016.

Persistence \& Stability

Stability of Persistence

In order to be adopted in real applicative domains, it is crucial that persistent homology is not affected by noisy data and small perturbations

Stability Result:
By defining distances* for both domains,

Similar
Persistent Homology
*The term "distance" is intended in a broad sense, including pseudo-metrics and dissimilarity measures

Stability of Persistence

Distances:

* For the Data in Input:
* Natural pseudo-distance of shapes
* L_{∞}-distance of filtering functions
* Gromov-Hausdorff distance of metric spaces/point clouds
* For the Retrieved Persistent Homology Information:
* Interleaving distance of persistence modules
* Bottleneck (a.k.a. Matching) distance of persistence diagrams
* Hausdorff distance of persistence diagrams
* Wasserstein distances of persistence diagrams

Stability of Persistence

Distances for Input Data:

Let (X, f) be a pair such that:

* X is a (triangulable) topological space
* $f: X \rightarrow \mathbb{R}$ is a continuous function

A pair (X, f) induces a filtration:

$$
+X^{t}:=f^{-1}((-\infty, t])
$$

Image from [Ferri et al. 2015]

Definition:

The function f is called tame if:
t has a finite number of homological critical values (i.e. the "time" steps in which homology changes)

* For any $k \in \mathbb{N}$ and $t \in \mathbb{R}$, the homology group $H_{k}\left(X^{t}, \mathbb{F}\right)$ has finite dimension

Stability of Persistence

Distances for Input Data:

Definition:

Given two pairs (X, f) and (Y, g), their natural pseudo-distance d_{N} is defined as:

$$
d_{N}((X, f),(Y, g)):=\left\{\begin{array}{l}
\inf _{h \in H(X, Y)}\left\{\max _{x \in X}\{|f(x)-g \circ h(x)|\}\right\} \\
+\infty \quad \text { if } H(X, Y)=\emptyset
\end{array}\right.
$$

where $H(X, Y)$ is the set of all the homeomorphisms between X and Y

Stability of Persistence

Distances for Input Data:

Working with two functions $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathbb{R}$ defined on the same topological space X , one can simply consider the L_{∞}-distance between f and g

$$
\|f-g\|_{\infty}:=\sup _{x \in X}\{|f(x)-g(x)|\}
$$

Stability of Persistence

Distances for Input Data:

Given two finite metric spaces $\left(\mathrm{X}, \mathrm{d}_{\mathrm{X}}\right)$, $\left(\mathrm{Y}, \mathrm{d}_{\mathrm{Y}}\right)$ (e.g. two finite point clouds in \mathbb{R}^{n}),

Definitions:

A correspondence C : $X \rightrightarrows Y$ from X to Y is a subset of $X \times Y$ such that the canonical projections $\pi_{X}: C \rightarrow X$ and $\pi_{Y}: C \rightarrow Y$ are both surjective

The distortion dis(C) of a correspondence $C: X \rightrightarrows Y$ is defined as:

$$
\operatorname{dis}(C):=\sup \left\{\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|:(x, y),\left(x^{\prime}, y^{\prime}\right) \in C\right\}
$$

The Gromov-Hausdorff distance $d_{G H}$ between $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ is defined as:

$$
d_{G H}(X, Y):=\frac{1}{2} \inf \{d i s(C) \mid C: X \rightrightarrows Y \text { is a correspondence }\}
$$

Stability of Persistence

Distances for Persistent Homology Information:

Two persistence modules M and N are called ε-interleaved with $\varepsilon \geq 0$ if there exist f and g such that, for any $p, q \in \mathbb{R}$ with $p \leq q$, the following diagrams commute

Definition:

Given two persistence modules M and N, their interleaving distance d_{1} is defined as:

$$
d_{I}(M, N):=\inf \{\varepsilon \geq 0 \mid \mathrm{M} \text { and } \mathrm{N} \text { are } \varepsilon \text {-interleaved }\}
$$

Stability of Persistence

Distances for Persistent Homology Information:

Definitions:

their bottleneck distance \boldsymbol{d}_{B} and Hausdorff distance \boldsymbol{d}_{H} are defined as:

$$
d_{B}\left(D_{1}, D_{2}\right):=\inf _{\gamma}\left\{\sup _{x \in D_{1}}\left\{\|x-\gamma(x)\|_{\infty}\right\}\right\}
$$

$d_{H}\left(D_{1}, D_{2}\right):=\max \left\{\sup _{x \in D_{1}}\left\{\inf _{y \in D_{2}}\left\{\|x-y\|_{\infty}\right\}\right\}, \sup _{y \in D_{2}}\left\{\inf _{x \in D_{1}}\left\{\|y-x\|_{\infty}\right\}\right\}\right\}$
where γ ranges over all bijections from D_{1} to D_{2}

Stability of Persistence

Distances for Persistent Homology Information:

Definitions:

Given two persistence diagrams D_{1} and D_{2},

their bottleneck distance \boldsymbol{d}_{B} and Hausdorff distance \boldsymbol{d}_{H} are defined as:

$$
d_{B}\left(D_{1}, D_{2}\right):=\inf _{\gamma}\left\{\sup _{x \in D_{1}}\left\{\|x-\gamma(x)\|_{\infty}\right\}\right\}
$$

$d_{H}\left(D_{1}, D_{2}\right):=\max \left\{\sup _{x \in D_{1}}\left\{\inf _{y \in D_{2}}\left\{\|x-y\|_{\infty}\right\}\right\}, \sup _{y \in D_{2}}\left\{\inf _{x \in D_{1}}\left\{\|y-x\|_{\infty}\right\}\right\}\right\}$
where γ ranges over all bijections from D_{1} to D_{2}

Stability of Persistence

Stability Results:

Given two pairs (X, f), (Y, g) of topological spaces and tame functions and $\mathrm{k} \in \mathbb{N}$, let M, N be the induced $k^{\text {th }}$ persistence modules and let $\mathrm{D}_{1}, \mathrm{D}_{2}$ be the corresponding persistence diagrams

* $\quad d_{H}\left(D_{1}, D_{2}\right) \leq d_{B}\left(D_{1}, D_{2}\right)$
* $\quad d_{I}(M, N)=d_{B}\left(D_{1}, D_{2}\right)$

Theorem:

Under the above hypothesis, the following optimal lower bound holds

$$
d_{I}(M, N) \leq d_{N}((X, f),(Y, g))
$$

Stability of Persistence

Stability Results:

Theorem:

Given two tame continuous functions $f, g: X \rightarrow \mathbb{R}$ on a topological space $X, k \in \mathbb{N}$, and D_{f}, D_{g} the induced $k^{\text {th }}$ persistence diagrams,

$$
d_{B}\left(D_{f}, D_{g}\right) \leq\|f-g\|_{\infty}
$$

Stability of Persistence

Stability Results:

Theorem:

Given two finite metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right), k \in \mathbb{N}$, and D_{X}, D_{Y} the $k^{\text {th }}$ persistence diagrams of the filtrations of the Vietoris-Rips complexes generated by X and Y,

$$
d_{B}\left(D_{X}, D_{Y}\right) \leq d_{G H}(X, Y)
$$

Bibliography

Some References:

+ Stability Results:
\% D. Cohen-Steiner, H. Edelsbrunner, J. Harer. Stability of persistence diagrams. Discrete \& Computational Geometry 37.1, pages 103-120, 2007.
\% F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, S. Y. Oudot. Proximity of persistence modules and their diagrams. Proc. of the 35 annual symposium on Computational Geometry, pages 237-246, 2009.
\% F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, S. Y. Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. Computer Graphics Forum 28.5, pages 1393-1403, 2009.

Computing Persistence

Persistent Homology Computation

Topological Data Analysis allows for assigning to (almost) any dataset a collection of features representing a topological summary of the input data

Shape

Features

Goal:

* How to efficiently compute (persistent) homology?
* How to compactly encode simplicial complexes of high dimension and large size?

Persistent Homology Computation

Standard Algorithm:

[Zomorodian \& Carlsson 2005]

Compute a reduced boundary matrix for $\left\{\mathrm{K}^{\mathrm{p}}\right\}_{\mathrm{p}}$ from which easily read the persistence pairs

Persistent Homology Computation

Given a filtered simplicial complex, let us consider its filtering function f :

$$
f(\sigma):=\min \left\{p \mid \sigma \in K^{p}\right\}
$$

Conversely, $K^{p}:=\{\sigma \in K \mid f(\sigma) \leq p\}$

Total Ordering on $\left\{K^{p}\right\}_{p}$:

A sequence $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ of the simplices of K such that:

+ if $f\left(\sigma_{i}\right)<f\left(\sigma_{j}\right)$, then $i<j$
+ if σ_{i} is a proper face of σ_{j}, then $i<j$

Persistent Homology Computation

Given a filtered simplicial complex, let us consider its filtering function f :

$$
f(\sigma):=\min \left\{p \mid \sigma \in K^{p}\right\}
$$

Conversely, $K^{p}:=\{\sigma \in K \mid f(\sigma) \leq p\}$

A Possible Choice:

$$
\begin{aligned}
& \text { Set } \sigma<\sigma^{\prime} \text { if: } \\
& +f(\sigma)<f\left(\sigma^{\prime}\right) \\
& +\quad f(\sigma)=f\left(\sigma^{\prime}\right) \text { and } \operatorname{dim}(\sigma)<\operatorname{dim}\left(\sigma^{\prime}\right) \\
& +\quad f(\sigma)=f\left(\sigma^{\prime}\right), \operatorname{dim}(\sigma)=\operatorname{dim}\left(\sigma^{\prime}\right) \text {, and } \sigma \text { precedes } \sigma^{\prime} \text { w.r.t. the lexicographic order of their vertices }
\end{aligned}
$$

Persistent Homology Computation

Boundary Matrix:

A square matrix D of size $n \times n$ defined by

$$
D_{i, j}:= \begin{cases}1 & \text { if } \sigma_{i} \text { is a face of } \sigma_{j} \text { s.t. } \operatorname{dim}\left(\sigma_{i}\right)=\operatorname{dim}\left(\sigma_{j}\right)-1 \\ 0 & \text { otherwise }\end{cases}
$$

E.g.

- $D_{4,18}=1$
- $D_{14,18}=1$
- $D_{13,18}=0$

Persistent Homology Computation

Reduced Matrix:

Given a non-null column j of a boundary matrix D,

$$
\operatorname{low}(j):=\max \left\{i \mid D_{i, j} \neq 0\right\}
$$

A matrix \boldsymbol{R} is called reduced if, for each pair of non-null columns j_{1}, j_{2},

$$
\operatorname{low}\left(j_{1}\right) \neq \operatorname{low}\left(j_{2}\right)
$$

Equivalently, if low function is injective on its domain of definition

Persistent Homology Computation

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3								1		1													
4								1			1						1	1					
5									1		1		1							1			
6									1		1		1								1		
7																				1			
8																							
9																							
10																							
11																							
12																1					1		
13																1	1			1			
14																		1					
15																				1			
16																						1	
17																						1	
18																							
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	7					13	14	14	15	16	14	22	

Persistent Homology Computation

Reduction Algorithm:

```
Matrix \(R=D\)
for \(j=1, \ldots, n\) do
        while \(\exists j^{\prime \prime}<j\) with low(j') \(=\operatorname{low}(j)\) do
        R.column \((j)=\) R.column(j) + R.column \(\left(j^{\prime}\right)\)
        endwhile
    endfor
    return \(R\)
```

Time Complexity:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1													
4							1			1						1	1						
5											1								1				
6								1			1								1				
7								1		1									1				
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1	1			1			
15																		1					
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																					1		
23																							
$l o w$								4	6	7	5	7					13	14	14	15	16	14	22

Initialize \boldsymbol{R} to \boldsymbol{D}, where
D is the boundary matrix of K

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1													
4								1			1						1	1					
5											1								1				
6									1			1								1			
7										1		1									1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																		1	1			1	
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	7					13	14	14	15	16	14	22

For each \boldsymbol{j} < 12,

$$
\begin{aligned}
& \text { there is no } j^{\prime}<j \text { such that } \\
& \quad \operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)
\end{aligned}
$$

So, increase \boldsymbol{j} by 1

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1													
4								1			1						1	1					
5											1								1				
6								1			1								1				
7									1		1									1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1	1			1			
15																	1						
16																		1					
17																				1			
18																			1				
19																							
20																							
21																							
22																					1		
23																							
$l o w$						4	6	7	5	7					13	14	14	15	16	14	22		

For $j=12, \operatorname{low}(12)=7$
column $j^{\prime}=10$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=7$
So, set
column 12 := column 12 + column 10

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1		1											
4								1			1						1	1					
5											1								1				
6								1			1								1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1	1			1			
15																		1					
16																		1					
17																					1		
18																					1		
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	6					13	14	14	15	16	14	22	

For $j=12, \operatorname{low}(12)=7$
column $j^{\prime}=10$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=7$
So, set
column $12:=$ column $12+$ column $10 \longrightarrow$ low(12) $=6$

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1		1											
4								1			1						1	1					
5											1								1				
6									1			1								1			
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1	1			1			
15																		1					
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	6					13	14	14	15	16	14	22	

For $j=12, \operatorname{low}(12)=6$
column $j^{\prime}=9$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=6$
So, set
column 12 := column 12 + column 9

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1								1				
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13																1					1		
14																1	1			1			
15																		1					
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	3					13	14	14	15	16	14	22	

For $j=12, \operatorname{low}(12)=6$
column $j^{\prime}=9$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=6$
So, set
column 12 := column 12 + column 9
$\longrightarrow \operatorname{low}(12)=3$

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1								1				
6									1											1			
7									1											1			
8																							
9																							
10																							
11																							
12																							
13																1					1		
14																	1	1			1		
15																		1					
16																		1					
17																					1		
18																					1		
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	3					13	14	14	15	16	14	22	

For each $\boldsymbol{j}=12$,

$$
\begin{aligned}
& \text { there is no } j^{\prime}<j \text { such that } \\
& \operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=\mathbf{3}
\end{aligned}
$$

So, increase \boldsymbol{j} by 1

$i \backslash j$	1	2	3	4	5	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		21	22	23
1									1																
2										1			1												
3											1		1												
4									1			1						1	1						
5												1								1					
6										1											1				
7											1												1		
8																									
9																									
10																									
11																									
12																									
13																		1						1	
14																			1	1				1	
15																					1				
16																							1		
17																									1
18																									1
19																									
20																									
21																									
22																									1
23																									
low									4	6	7	5	3					13	14	14	15		16	14	22

For each 12 < <19,

$$
\begin{aligned}
& \text { there is no } j^{\prime}<j \text { such that } \\
& \qquad \operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)
\end{aligned}
$$

So, increase \boldsymbol{j} by 1

$i \backslash j$	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		18	19	20	21	22	23
1									1																
2										1			1												
3											1		1												
4									1			1						1		1					
5												1									1				
6										1												1			
7											1												1		
8																									
9																									
10																									
11																									
12																									
13																		1						1	
14																				1	1			1	
15																						1			
16																							1		
17																									1
18																									1
19																									
20																									
21																									
22																									1
23																									
low									4	6	7	5	3					13		14	14	15	16	14	22

For $j=19, \operatorname{low}(19)=14$
column $j^{\prime}=18$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=14$
So, set
column 19 := column 19 + column 18

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1	1				
5											1								1				
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1				1			
15																		1					
16																		1					
17																					1		
18																				1			
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	3					13	14	5	15	16	14	22	

For $j=19, \operatorname{low}(19)=14$
column $j^{\prime}=18$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=14$
So, set
column 19 := column 19 + column 18
\longrightarrow low(19) $=5$

$i \backslash j$	1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1									1															
2										1			1											
3											1		1											
4									1			1						1	1	1				
5												1								1				
6										1											1			
7											1											1		
8																								
9																								
10																								
11																								
12																								
13																		1					1	
14																			1				1	
15																					1			
16																						1		
17																								1
18																								1
19																								
20																								
21																								
22																								1
23																								
low									4	6	7	5	3					13	14	5	15	16	14	22

For $j=19, \operatorname{low}(19)=5$
column $j^{\prime}=11$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=5$
So, set
column 19 := column 19 + column 11

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6									1											1			
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1				1			
15																		1					
16																		1					
17																					1		
18																				1			
19																							
20																							
21																							
22																				1			
23																							
$l o w$							4	6	7	5	3					13	14		15	16	14	22	

For $j=19, \operatorname{low}(19)=5$
column $j^{\prime}=11$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=5$
So, set
column 19 := column 19 + column 11 \qquad low(19) undefined

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13																1					1		
14																1				1			
15																		1					
16																			1				
17																					1		
18																				1			
19																							
20																							
21																							
22																					1		
23																							
$0 w$							4	6	7	5	3					13	14		15	16	14	22	

For each $\boldsymbol{j}=19$,

> there is no $j^{\prime}<j$ such that
> $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)$

So, increase \boldsymbol{j} by 1

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1				1	
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																		1					
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	3					13	14		15	16	13	22

For $j=22, \operatorname{low}(22)=14$
column $j^{\prime}=18$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=14$
So, set
column 22 := column 22 + column 18
$\longrightarrow \operatorname{low}(22)=13$

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1				1	
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																		1					
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	3					13	14		15	16	13	22

For $j=22, \operatorname{low}(22)=13$
column $j^{\prime}=17$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=13$
So, set
column 22 := column 22 + column 17

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1								
14																1							
15																	1						
16																		1					
17																					1		
18																			1				
19																							
20																							
21																							
22																					1		
23																							
low						4	6	7	5	3					13	14		15	16		22		

For $j=22, \operatorname{low}(22)=13$
column $j^{\prime}=17$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=13$
So, set
column 22 := column 22 + column 17
\longrightarrow low(22) undefined

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1								
14																1							
15																		1					
16																		1					
17																					1		
18																			1				
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	3					13	14		15	16		22	

For each $\boldsymbol{j}=\mathbf{2 2}$,

> there is no $j^{\prime}<j$ such that
> $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)$

So, increase \boldsymbol{j} by 1

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5										1													
6								1											1				
7								1											1				
8																							
9																							
10																							
11																							
12																							
13															1								
14																1							
15																		1					
16																		1					
17																					1		
18																					1		
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	3					13	14		15	16		22	

For each $\boldsymbol{j}=\mathbf{2 3}$,

$$
\begin{aligned}
& \text { there is no } j^{\prime}<j \text { such that } \\
& \operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=\mathbf{2 2}
\end{aligned}
$$

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6									1											1			
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1								
14																1							
15																		1					
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	3					13	14		15	16		22	

The algorithm returns the above reduced matrix \boldsymbol{R}

Persistent Homology Computation

Retrieving Persistence Pairs:

* For each $i=1, \ldots, n$,
if there exists j such that $\operatorname{low}(j)=i \quad \square \quad[i, j]$ is a pair for R
* Once every i has been parsed,
if i is an unpaired value $[i, \infty)$ is a pair for R

From pairs of R to the "actual" persistence pairs of $\left\{K^{p}\right\}_{p}$:
[i, j] corresponds to [f($\left.\left.\sigma_{i}\right), f\left(\sigma_{j}\right)\right]$
$\left(\right.$ homological degree $=\operatorname{dim}\left(\sigma_{i}\right)$)
$[i, \infty)$ corresponds to $\left[f\left(\sigma_{i}\right), \infty\right)$

Persistent Homology Computation

H_{0} $[1, \infty)$ $[2, \infty)$ $[3,12]$ $[4,8]$ $[5,11]$ $[6,9]$ $[7,10]$ $[13,17]$ $[14,18]$ $[15,20]$ $[16,21]$ H $[19, \infty)$ $[22,23]$

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13															1								
14															1								
15																	1						
16																		1					
17																				1			
18																			1				
19																							
20																							
21																							
22																					1		
23																							
low							4	6	7	5	3					13	14		15	16		22	

Persistent Homology Computation

Persistent Homology Computation

Standard algorithm to compute (persistent) homology [Zomorodian \& Carlsson 2005]:

* Based on a matrix reduction
* Linear complexity in practical cases
* Cubic complexity in the worst case

Several different strategies:

Direct approaches:

* Zigzag persistent homology [Milosavljević et al. '05]
* Computation with a twist [Chen, Kerber '11]
+ Dual algorithm [De Silvia et al. '11]
+ Output-sensitive algorithm [Chen, Kerber '13]
+ Multi-field algorithm [Boissonnat, Maria '14]
* Annotation-based methods [Boissonnat et al. '13; Dey et al. '14]

Distributed approaches:

* Spectral sequences [Edelsbrunner, Harer '08; Lipsky et al. '11]
* Constructive Mayer-Vietoris [Boltcheva et al. '11]
+ Multicore coreductions [Murty et al. '13]
* Multicore homology [Lewis, Zomorodian '14]
* Persistent homology in chunks [Bauer et al. '14a]
* Distributed persistent computation [Bauer et al. '14b]

Coarsening approaches:

* Topological operators and simplifications [Mrozek, Wanner '10; Dłotko, Wagner '14]
* Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Persistent Homology Computation

Direct Approaches:

* Zigzag persistent homology [Milosavljević et al. '05]
* Computation with a twist [Chen, Kerber '11]
* Dual algorithm [De Silvia et al. '11]
* Output-sensitive algorithm [Chen, Kerber '13]
* Multi-field algorithm [Boissonnat, Maria '14]
* Annotation-based methods [Boissonnat et al. '13; Dey et al. '14]

Persistent Homology Computation

Distributed Approaches:

* Spectral sequences [Edelsbrunner, Harer '08; Lipsky et al. '11]
* Constructive Mayer-Vietoris [Boltcheva et al. '11]
* Multicore coreductions [Murty et al. '13]
* Multicore homology [Lewis, Zomorodian '14]
* Persistent homology in chunks [Bauer et al. '14a]
* Distributed persistent computation [Bauer et al. '14b]

Persistent Homology Computation

Coarsening Approaches:

* Topological operators and simplifications [Dłotko, Wagner '14]
* Acyclic subcomplexes [Mrozek et al. ‘08]
* Reductions and coreductions [Mrozek et al. '10]
* Edge contractions [Attali et al. '11]
* Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Persistent Homology Computation

Coarsening Approaches:

* Topological operators and simplifications [Dłotko, Wagner '14]
* Acyclic subcomplexes [Mrozek et al. ‘08]
* Reductions and coreductions [Mrozek et al. '10]
* Edge contractions [Attali et al. '11]
* Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Persistent Homology Computation

Coarsening Approaches:

* Topological operators and simplifications [Dłotko, Wagner '14]
* Acyclic subcomplexes [Mrozek et al. ‘08]
* Reductions and coreductions [Mrozek et al. '10]
* Edge contractions [Attali et al. '11]
* Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Persistent Homology Computation

Coarsening Approaches:

* Topological operators and simplifications [Dłotko, Wagner '14]
* Acyclic subcomplexes [Mrozek et al. ‘08]
* Reductions and coreductions [Mrozek et al. '10]
* Edge contractions [Attali et al. '11]
* Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Persistent Homology Computation

Coarsening Approaches:

* Topological operators and simplifications [Dłotko, Wagner '14]
* Acyclic subcomplexes [Mrozek et al. ‘08]
* Reductions and coreductions [Mrozek et al. '10]
* Edge contractions [Attali et al. '11]
* Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Bibliography

Some References:

+ Persistent Homology Computation:
\% A. Zomorodian, G. Carlsson. Computing persistent homology. Discrete \& Computational Geometry, 33.2, pages 249-274, 2005.
\% N. Otter, M.A. Porter, U. Tillmann, P. Grindrod, H.A. Harrington. A roadmap for the computation of persistent homology. EPJ Data Science, 6.1, 2017.

Data Structures

Encoding Simplicial Complexes

 Issue:It is enough to have a point cloud consisting of at least 30 points for having to deal with an associated filtered simplicial complex of more than a billion of simplices

Solution:

Development of compact and efficient data structures for encoding arbitrary simplicial complexes

Encoding Simplicial Complexes

Outline:

* Which info to be stored?
* Data Structures
\% Simplex-based representations
: Top-based representations
: Operator-driven representations
- Comparisons
* Issues and solutions in adopting top-based representations

Out Of Scope:

* Data structures for specific classes of complexes
* E.g. manifold or complexes of low dimension

Encoding Simplicial Complexes

Data Structure:

The entities which a simplicial complex consists of are:

- its simplices

$$
K=K_{0} \cup K_{1} \cup \ldots \cup K_{d}
$$

where K_{i} is the collection of the i -simplices of K

* the topological relations

$$
\mathrm{R}_{\mathrm{i}, \mathrm{j}} \subseteq \mathrm{~K}_{\mathrm{i}} \times \mathrm{K}_{\mathrm{j}}
$$

between the simplices of K encoding the (co-)boundary of each simplex

A data structure for K has to explicitly store a portion of the above information and to (efficiently) retrieve the remaining part

Encoding Simplicial Complexes

Topological Relations:

Given an i-simplex σ and a j-simplex τ of K ,

Encoding Simplicial Complexes

Store all the entities

O Top-based representations

- Operator-driven representations

Encoding Simplicial Complexes

© Simplex-based representations

- Top-based representations
- Operator-driven representations

Store only the top simplices

Encoding Simplicial Complexes

Store only the top simplices

Encoding Simplicial Complexes

Encoding Simplicial Complexes

Compactness

Store only the top simplices

Encoding Simplicial Complexes

Compactness

Skeleton
Blocker

Store only the top simplices

Simplex-based Representations

Incidence Graph:

The simplicial complex K is encoded via a directed graph $\boldsymbol{G}=(\mathbf{N}, \mathrm{A})$:

$$
N \hookleftarrow K
$$

$$
(\sigma, \tau) \in A \hookleftarrow(\sigma, \tau) \in R_{i, i+1}
$$

All the relations between simplices can be immediately retrieved The representation size exponentially increases with the complex dimension

Simplex-based Representations

Simplex Tree:

The simplicial complex K is encoded via a directed graph $\mathbf{G}=(\mathbf{N}, \mathrm{A})$:

$$
N \leftrightarrows K
$$

$$
(\sigma, \tau) \in A \hookleftarrow(\sigma, \tau) \in R_{i, i+1} \text { and } I(\sigma)<I(\tau)
$$

where $I(\sigma)$ denotes the maximum value taken by the vertices of σ w.r.t. a total order on K_{0}

Simplex-based Representations

Simplex Tree:

The simplicial complex K is encoded via a directed graph $\boldsymbol{G}=(\mathbf{N}, \mathrm{A})$:

$$
N \leftrightarrows K
$$

$$
(\sigma, \tau) \in A \hookleftarrow(\sigma, \tau) \in R_{i, i+1} \text { and } I(\sigma)<I(\tau)
$$

where I(σ) denotes the maximum value taken by the vertices of σ w.r.t. a total order on K_{0}

Top-based Representations

IA* Data Structure:

The simplicial complex K is encoded via a directed graph $\boldsymbol{G}=(\mathbf{N}, \mathrm{A})$:

$$
\mathbf{N} \hookrightarrow K_{o} \cup K_{\text {top }} \quad(\sigma, \tau) \in \boldsymbol{A} \longleftrightarrow\left\{\begin{array}{l}
\sigma, \tau \in K_{\text {top }} \text { and }(\sigma, \tau) \in \boldsymbol{R}_{i, i} \\
\tau \in K_{\text {top }} \text { and }(\sigma, \tau) \in
\end{array}\right.
$$

$$
(\sigma, \tau) \in A \hookrightarrow\left\{\begin{array}{l}
\sigma \in K_{\text {top }} \text { and }(\sigma, \tau) \in R_{i, 0} \\
\sigma, \tau \in K_{\text {top }} \text { and }(\sigma, \tau) \in \boldsymbol{R}_{i, i} \\
\tau \in K_{\text {top }} \text { and }(\sigma, \tau) \in
\end{array}\right.
$$

Compact: it explicitly stores just a fraction of the entities of a simplicial complex Not all the relations between simplices are immediately available

Top-based Representations

Stellar Tree:

Given a decomposition of K_{0}, the simplicial complex K is encoded via a directed graph $G=(N, A)$:

$$
\mathbf{N} \hookleftarrow\left(K_{0}=V_{1} \cup V_{2} \cup \ldots \cup V_{n}\right) \cup K_{\text {top }} \quad(\sigma, \tau) \in A \hookrightarrow \sigma \in K_{\text {top }} \text { and }(\sigma, \tau) \in R_{i, 0}
$$

plus a map returning, for each j, the vertices of K in V_{j} and the top simplices with at least one vertex in V_{j}

Compact and highly adjustable (e.g. choice of the decomposition, of the maximum number of vertices in each region)
Not all the relations between simplices are immediately available

Operator-driven Representations

Skeleton Blocker:

The simplicial complex K is encoded by storing its 1 -skeleton (i.e. the graph consisting of the 0 - and the 1-simplices) and a map returning, for each 1-simplex σ, the blockers of K containing σ, where:

A simplex τ is a blocker if τ does not belong to K but all its faces do

Designed for flag complexes (e.g. VR complexes) and edge contraction Too specific: inefficient in any other task

Encoding Simplicial Complexes

Top-based vs Simplex-based:

Dataset	d	$\left\|\Sigma_{0}\right\|$	$\left\|\Sigma_{\text {top }}\right\|$	$\|\Sigma\|$	Storage Cost		
			$I A^{*}$	$I G$	$S T$		
DTI-SCAN	3	0.9 M	5.5 M	24 M	0.97	11.9	2.4
VISMALE	3	4.6 M	26 M	118 M	4.7	-	9.7
ACKLEY4	4	1.5 M	32 M	204 M	6.8	-	12.8
AmAZON01	6	0.2 M	0.4 M	2.2 M	0.12	1.6	0.3
AMAZON02	7	0.4 M	1.0 M	18.4 M	0.28	9.8	1.5
ROADNET	3	1.9 M	2.5 M	4.8 M	0.8	3.3	1.0
SpHERE-1.0	16	100	224	0.6 M	0.003	0.9	0.04
SpHERE-1.2	21	100	285	26 M	0.0032	-	1.5
SpHERE-1.3	23	100	382	197 M	0.0034	-	11.01

Encoding Simplicial Complexes

Top-based vs Simplex-based:

Encoding Simplicial Complexes

Top-based vs Operator-driven:

data	ω		contr. edges	timings			memory peak	
				check	contr.	tot	gen.	simpl.
$\begin{aligned} & \text { O} \\ & \text { U } \\ & \text { U } \\ & \text { U } \end{aligned}$	28	weak	6.38 K	$9.15 h$	2.27 m	9.19h	5.6	$\begin{array}{r} 57.2 \mathrm{~K} \\ 7.6 \end{array}$
		top		0.01 s	0.02 s	0.09s		
		Skel.		0.00 s	0.15 s	0.15 s	7.8	7.8
	56	weak	7.99K	out-of-memory			6.2	-
		top		0.04s	0.06s	0.23s		10.8
		Skel.		0.00 s	0.71 s	0.71 s	14.1	14.1
$\begin{aligned} & \text { 盗 } \\ & \stackrel{y}{\mid c} \end{aligned}$	63	weak	27.9K	out-of-memory			11.6	14.9
		top		0.08s	0.11 s	0.38s		
		Skel.		0.00 s	0.74 s	0.75 s	26.4	26.8
	126	weak	31.2 K	out-of-memory			10.0	-
		top		0.40 s	0.49s	$1.36 s$		25.9
		Skel.		0.01 s	7.73 s	7.74 s	66.1	66.7
$\begin{aligned} & \hline \text { m } \\ & \frac{1}{4} \\ & \sum_{n}^{2} \\ & \sum \end{aligned}$	3.5	weak	4.23 M	34.3 m	1.28 m	40.4 m	$\begin{aligned} & 1.0 \mathrm{~K} \\ & 8.0 \mathrm{~K} \end{aligned}$	2.0 K
		top		4.34 m	0.89 m	7.20 m		2.0 K
		Skel.		0.76 m	$3.34 h$	3.35h		8.0 K
5	4.5	weak	4.69 M	killed after 25 hours			$\begin{array}{r} 7.5 \mathrm{~K} \\ 19.4 \mathrm{~K} \end{array}$	-
		top		$2.89 h$	26.0 m	$3.32 h$		10.7 K
		Skel.		killed	after 25	ours		-
$\begin{aligned} & \text { N } \\ & \text { Bun } \end{aligned}$	1.5	weak	14.0M	killed after 25 hours			$\begin{array}{r} 7.5 \mathrm{~K} \\ 50.9 \mathrm{~K} \end{array}$	-
		top		11.9 m	14.8 m	32.0 m		15.4 K
		Skel.		23.19s	$14.6 h$	$14.6 h$		52.1 K

Encoding Simplicial Complexes

Possible Issues in Top-based Representations:

Top-based representations are promising data structures for encoding a simplicial complex K

but, how to ...

* Store information associated to each simplex of K (e.g. labels, gradient, ...)?

Attach information to the top simplices only

* Efficiently perform operators having explicitly stored a fraction of the entities of K?

Re-define the algorithms performing the operators trying to extract the lowest possible amount of non-explicitly stored entities

Bibliography

Some References:

- Data Structures for Arbitrary Simplicial Complexes:
* D. Canino, L. De Floriani, K. Weiss. IA*: an adjacency-based representation for non-manifold simplicial shapes in arbitrary dimensions. Computers \& Graphics, 35.3, pages 747-753, 2011.
* D. Attali, A. Lieutier, D. Salinas. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. International Journal of Computational Geometry \& Applications, 22.4, pages 279-303, 2012.
* J.D. Boissonnat, C. Maria. The simplex tree: An efficient data structure for general simplicial complexes. Algorithmica, 70.3, pages 406-427, 2014.
\% R. Fellegara, K. Weiss, L. De Floriani. The Stellar tree: a compact representation for simplicial complexes and beyond. arXiv preprint:1707.02211, 2017.
* U. Fugacci, F. Iuricich, L. De Floriani. Computing discrete Morse complexes from simplicial complexes. Graphical models, 103, 101023, 2019.
* R. Fellegara, F. Iuricich, L. De Floriani, U. Fugacci. Efficient Homology-Preserving Simplification of HighDimensional Simplicial Shapes. Computer Graphics Forum, 39.1, pages 244-259, 2020.

Possible Topics for Seminars

Discrete Morse Theory
Study the shape of a space by studying the behavior of a function defined on it

Possible Topics for Seminars

Image courtesy of [Carlsson \& Zomorodian 2009]

Multi-Parameter Persistent Homology

What if we consider multiple filtering functions?

Possible Topics for Seminars

Persistent Homology \& Networks

Homological Scaffolds: Topological summaries of weighted graphs
Clique Community Persistence: Tracking the evolution of network communities

Possible Topics for Seminars

Algorithms \& Implementation

* Efficient computation of Vietoris-Rips complexes and other data-to-complex strategies
* Focus on a specific algorithm for speed-up persistent homology computation
* Use of available software tools for testing persistent homology on various datasets

